Answer:
Final volume, V2 = 24.62 L
Explanation:
Given the following data;
Initial volume = 40 L
Initial pressure = 80 Pa
Final pressure = 130 Pa
To find the final volume V2, we would use Boyles' law.
Boyles states that when the temperature of an ideal gas is kept constant, the pressure of the gas is inversely proportional to the volume occupied by the gas.
Mathematically, Boyles law is given by;
Substituting into the equation, we have;




Final volume, V2 = 24.62 Liters
The spiral structure emerges when galactic clusters (open), H II regions and O & B type stars (young stars) are used as tracers. We know this to be true as other pinwheel galaxies exhibit the same patterns across these tracers as in the milky way.
Answer:
<h3>The answer is 1600 kgm/s</h3>
Explanation:
The momentum of an object can be found by using the formula
<h3>momentum = mass × velocity</h3>
From the question
mass = 200 kg
velocity / speed = 8m/s
We have
momentum = 200 × 8
We have the final answer as
<h3>1600 kgm/s</h3>
Hope this helps you
Answer:
d.-10.3m
Explanation:
Note for short sightedness the focal length is negative
Let do be object distance=10m
And di= image distance=-300m
Using lens formula
F=do*di/do-di= 10*300/10-300=-10.3m
Answer:
ω, the angular frequency of the source equals 377 rad/s
Explanation:
From the question, V(t) = V cosωt.
Now, ω = the angular frequency of the sinusoidal wave is given by
ω = 2πf where f = the frequency of the source = 60 Hz
So, the angular frequency of the source ,ω = 2π × the frequency of the source.
So, ω = 2πf
ω = 2π × 60 Hz
ω = 120π rad/s
ω = 376.99 rad/s
ω ≅ 377 rad/s
So, ω, the angular frequency of the source equals 377 rad/s