The Electromagnetic spectrum.
Answer:
(A) Distance will be equal to 1.75 km
(B) Displacement will be equal to 1.114 km
Explanation:
We have given circumference of the circular track = 3.5 km
Circumference is given by 
r = 0.557 km
(a) It is given that car travels from southernmost point to the northernmost point.
For this car have to travel the distance equal to semi perimeter of the circular track
So distance will be equal to 
(b) If car go along the diameter of the circular track then it will also go from southernmost point to the northernmost point. and it will be equal to diameter of the track
So displacement will be equal to d = 2×0.557 = 1.114 m
Answer:
The frequency of sound heard by the boy is 1181 Hz.
Explanation:
Given that,
Frequency of sound from alarm 
Speed = -8.25 m/s
Negative sign show the boy riding away from the car
Speed of sound = 343
We need to calculate the heard frequency
Using formula of frequency

Where,
= frequency of source
= speed of observer
= speed of source
= speed of sound
Put the value into the formula

here, source is at rest


Hence, The frequency of sound heard by the boy is 1181 Hz.
Answer:
20 meters per second
Explanation:
If an object accelerates for 2 seconds, and accelerates by 10 meters per second, then that objects speed will be 20 meters per second, assuming hat there are no other factors involved.
Answer:
α = 0
, w = w₀
Explanation:
Torque is related to angular acceleration by Newton's second law for rotational motion.
τ = I α
Where τ is the torque, I the moment of inertia and α the angular acceleration.
If we apply an external torque for the sum of all torques to be zero, the angular acceleration must fall to zero
α = 0
Since the acceleration is zero, the angular velocity you have at that time is constantly killed.
w = w₀ + α t
w = w₀ + 0