Answer:
You did not post the options, but i will try to answer this in a general way.
Because we have two solutions, i know that we are talking about quadratic equations, of the form of:
0 = a*x^2 + b*x + c.
There are two easy ways to see if the solutions of this equation are real or not.
1) look at the graph, if the graph touches the x-axis, then we have real solutions (if the graph does not touch the x-axis, we have complex solutions).
2) look at the determinant.
The determinant of a quadratic equation is:
D = b^2 - 4*a*c.
if D > 0, we have two real solutions.
if D = 0, we have one real solution (or two real solutions that are equal)
if D < 0, we have two complex solutions.
It would be 13 because you are adding 5 and 8
Answer: 0.79
Step-by-step explanation:
I will suppose that this is not a continuos probability, as the individual probabilites add up to 100%.
If you want to obtain the probability that x ≤ 0, then you need to add the probability for the cases x= 0, x = -1, x = -2 .... etc
This is:
x = 0, p = .16
x = -2, p = .33
x = -3, p = .13
x = -5, p = .17
Then, the probability where x takes a negative value or zero {-5, -3, -2, 0} is:
P = 0.16 + 0.33 + 0.13 + 0.17 = 0.79
Your subtracting 3x from 5x: 5x-3x
This is so you only have a variable on one side
Answer:
the M is (2,5)
Step-by-step explanation: