Answer:
I hope this helps!!!
Step-by-step explanation:
Answer:
see explanation
Step-by-step explanation:
(a)
Given
2k - 6k² + 4k³ ← factor out 2k from each term
= 2k(1 - 3k + 2k²)
To factor the quadratic
Consider the factors of the product of the constant term ( 1) and the coefficient of the k² term (+ 2) which sum to give the coefficient of the k- term (- 3)
The factors are - 1 and - 2
Use these factors to split the k- term
1 - k - 2k + 2k² ( factor the first/second and third/fourth terms )
1(1 - k) - 2k(1 - k) ← factor out (1 - k) from each term
= (1 - k)(1 - 2k)
1 - 3k + 2k² = (1 - k)(1 - 2k) and
2k - 6k² + 4k³ = 2k(1 - k)(1 - 2k)
(b)
Given
2ax - 4ay + 3bx - 6by ( factor the first/second and third/fourth terms )
= 2a(x - 2y) + 3b(x - 2y) ← factor out (x - 2y) from each term
= (x - 2y)(2a + 3b)
Answer:
1/4=z/20. This deals with adding, subtracting and finding the least common multiple. Overview; Steps; Topics Terms and topics;
Step-by-step explanation:
f(x)=2x²+3x+9
g(x) = - 3x + 10
In order to find (f⋅g)(1) first find (f⋅g)(x)
To find (f⋅g)(x) substitute g(x) into f(x) , that's for every x in f (x) replace it by g (x)
We have
(f⋅g)(x) = 2( - 3x + 10)² + 3(- 3x + 10) + 9
Expand
(f⋅g)(x) = 2( 9x² - 60x + 100) - 9x + 30 + 9
= 18x² - 120x + 200 - 9x + 30 + 9
Group like terms
(f⋅g)(x) = 18x² - 120x - 9x + 200 + 30 + 9
(f⋅g)(x) = 18x² - 129x + 239
To find (f⋅g)(1) substitute 1 into (f⋅g)(x)
That's
(f⋅g)(1) = 18(1)² - 129(1) + 239
= 18 - 129 + 239
We have the final answer as
<h3>(f⋅g)(1) = 128</h3>
Hope this helps you