The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Zero (0) molecules of glucose are produced.
It take more energy to break the bonds of the reactants and less energy is given off when the product bonds are formed.
<h3>What is Energy?</h3>
Energy is defined as the ability to do work. Work is done in the breaking or formation of bonds.
The standard Enthalpy (ΔH) of water which was formed in the given reaction is negative.
ΔH= Δproduct - Δreactant
This means that the energy to break the bonds of the reactants is more.
Read more about Enthalpy here brainly.com/question/14291557
Materials<span> and their </span>properties<span>: </span>compounds like<span> sodium chloride - an interactive educational resource for 11 to 14 year olds. ... Elements are substances (</span>like<span> hydrogen and oxygen) that can't be split into simpler substances. ... For </span>each<span> statement, decide whether it describes a mixture or a </span>compound<span> and check the box.</span>
Answer:
pOH = 11.5
[H⁺] = 0.003 M
[OH⁻] = 3 × 10⁻¹² M
Explanation:
The computation is shown below:
Given that
pH = 2.5
Based on the above information
We know that
pH + pOH = 14 ⇒ pOH = 14 - pH
pOH = 14 - 2.5
pOH = 11.5
[H⁺] = 10^(-pH) = 10^(-2.5)
[H⁺] = 0.003 M
[OH⁻] = 10^(-pOH)
= 10^(-11.5)
= 3 × 10⁻¹² M
[OH⁻] = 3 × 10⁻¹² M
Hence, the above represents the answer