1) Write the balanced equation to state the molar ratios:
<span>3H2(g) + N2(g) → 2NH3(g)
=> molar ratios = 3 mol H2 : 1 mol N2 : 2 mol NH3
What volume of nitrogen is needed to produce 250.0 L of ammonia gas at STP?
First, convert the 250.0 L of NH3 to number of moles at STP .
Use the fact that 1 mole of gas at STP occupies 22.4 L
=> 250.0 L * 1mol/22.4 L = 11.16 L
Second, use the molar ratio to find the number of moles of N2 that produces 11.16 L of NH3
=> 11.16 L NH3 * [1 mol N2 / 2 mol NH3] = 5.58 mol N2
Third, convert 5.58 mol N2 into liters at STP
=> 5.58 mol N2 * [22.4 L/mol] = 124.99 liters
Answer: 124,99 liters
What volume of hydrogen is needed to produce 2.50 mol NH3 at STP?
First, find the number of moles of H2 that produce 2.50 mol by using the molar ratios:
2.50 mol NH3 * [3mol H2 / 2 mol NH3] = 3.75 mol H2
Second, convert the number of moles to liters of gas at STP:
3.75 mol * 22.4 L/mol = 84 liters of H2
Answer: 84 liters
</span>
C. Lowering the temperature
At the lower temperature, particles have less kinetic energy, so they move slower.
Answer: 460.624
Explanation:
1. Multiply the numbers
(24.5260 x 2.56) + 397.84
= (62.784) + 397.84
2. Add the numbers
(62.784) + 397.84
= 460.624
I found these four statements for that question:
Each molecule contains four different elements.
Each molecule contains three atoms.
Each molecule contains seven different bonds.
Each molecule contains six oxygen atoms.
The last one is true. Each molecule contains six oxygen atoms.
The number to the right of O and of (NO3) ares subscripts.
The chemical formula uses subscripts to indicate the number of atoms.
The subscript 2 in (NO3)2 means that there are two NO3 radicals.
And the subscript 3 to the right of O means that each NO3 radical has three atoms of O.
Then, the number of atoms of O is 2 * 3 = 6.
So, the true statement is the last one: each molecule of Ba (NO3)2 has six atoms of O.
From that molecule you can also tell:
- Each molecule contains one atom of barium
- Each molecule contains two atoms of nitrogen
- Each molecule contains two NO3 radicals