Answer:
Knowing that boron has an atomic mass of 10,811 means that all boron isotopes on average weigh 10,811 u.
Explanation:
The atomic mass of an atom is the mass of the atom measured in u (unified atomic mass unit), although we can also express it as Da (Dalton's unit)
Atomic mass refers to the average mass that all isotopes of that element have.
When we speak of isotopes we are referring to the element itself but with a different number of neutrons, which makes it modify its mass number.
Answer: 1s^22s^22p^63s^23p^3
Explanation:
Assuming that orbital configuration is the same as electron configuration this is the answer.
Answer:
A: Antibonding molecular orbitals are higher in energy than all of the bonding molecular orbitals.
Explanation:
Molecular orbital theory describes <u>covalent bonds in terms of molecular orbitals</u>, which result from interaction of the atomic orbitals of the bonding atoms and are associated with the entire molecule.
A bonding molecular orbital has lower energy and greater stability than the atomic orbitals from which it was formed. An antibonding molecular orbital has higher energy and lower stability than the atomic orbitals from which it was formed.
Electrons in the antibonding molecular orbital have higher energy (and less stability) than they would have in the isolated atoms. On the other hand, electrons in the bonding molecular orbital have less energy (and hence greater stability) than they would have in the isolated atoms.
Answer:
Explanation:
Molal freezing point depression constant of butanol Kf = 8.37⁰C /m
ΔTf = Kf x m , m is no of moles of solute per kg of solvent .
mol weight of butanol = 70 g
235.1 g of butanol = 235.1 / 70 = 3.3585 moles
3.3585 moles of butanol dissolved in 4.14 kg of water .
ΔTf = 8.37 x 3.3585 / 4.14
= 6.79⁰C
Depression in freezing point = 6.79
freezing point of solution = - 6.79⁰C .