The method of separating mixtures by means of their differences in the chemical properties of the components is less convenient because these methods requires reactions therefore needs energy, increasing the costs for the process.
Answer:
3.67 moles of N
Explanation:
The epinephrine's chemical formula is: C₉H₁₃O₃N
We were told that a chemist found that in a mesaure of epinephrine, he found 33 moles of C
We must know that 9 moles of C are in 1 mol of C₉H₁₃O₃N so, let's make a rule of three:
If 9 moles of C are found in 1 mol of C₉H₁₃O₃N
Therefore 33 moles of C must be found in (33 .1) / 9 = 3.67 moles of C₉H₁₃O₃N
There is a second rule of three, then.
In 1 mol of C₉H₁₃O₃N we have 1 mol of N
Then, 3.67 moles C₉H₁₃O₃N must have (3.67 . 1) / 1 = 3.67 moles of N
Remember 1 mol of C₉H₁₃O₃N has 9 moles of C, 13 moles of H, 3 moles of O and 1 mol of N
RADIATION. Radio waves, microwaves, IR, light, UV, x-rays, GAMMA waves etc are ALL Electromagnetic radiation. The difference between ALL the above is the frequency, I.E. The number of waves per second. The higher the frequency the more energy.
This is an aplication of Le Chatelier Principle. So, if you need further details about the theory behind the answer, search for this subject.
Here is the answer and the explanation.
You can realize that 1 mol of reactant produce 2 moles of products, which means that the trend of the reaction is to increase the volume (at constant pressure) or to increase the pressure (at constant volume). If you realease the pressure by increasing the volume, Le Chaelier principle permit you to predict a displacement of the equilibrium to the right (to the products). This is, because the equilibrium will try to restore (increase) the pressure by producing more molecules.
So, the answer is the option B. There will be a shift toward the products.
Answer: molecule of the kind normally found in living systems. Organic molecules are usually composed of carbon atoms in rings or long chains, to which are attached other atoms of such elements as hydrogen, oxygen, and nitrogen.
Explanation: