Answer:
1) 7.256 mol Br2 (Cl2)/(Br2)
The Br2 cancels out, so we have 7.256(2)
This is 14.512.
2) Number of moles = mass / molar mass
Number of moles = 239.7 g/ 35.5 g/mol
Number of moles = 6.8 mol
BrCl=13.6 mol
13.6(11.5.357)
1568.9 g
3) Repeat the same process with problem 2, given that there are 6.022x10^23 atoms in a mole.
Explanation:
Br2 + Cl2 → 2BrCl
Answer:
See the answer below
Explanation:
<em>Since the experiment is set out to determine the melting point of the white solid, after missing the melting point due to distraction, there are two possible solutions and both involves a repeat of the experiment.</em>
1. The first one is to allow the molten substance to solidify again and then repeat the experiment. This time around, a critical attention should be paid to be able to notice the melting point temperature once the temperature gets to 132 C.
2. The second solution would be discard the molten substance and repeat the experiment with the a new solid one. Similarly, critical attention should be paid once the temperature gets to 132 C since it is sure that the melting point lies within 132 and 138 C.
Lattice energy of potassium nitrate (KNO3) = -163.8 kcal/mol
Hydration energy of KNO3 = -155.5 kcal/mole
Heat of solution is the amount of heat absorbed by water when 1 mole of KNO3 is dissolved in it
Heat of solution = Hydration energy - Lattice energy
= -155.5 -(-163.8) = 8.3 kcal/mol
1 kcal/mol = 4.184 kJ/mole
Therefore, 8.3 kcal/mole = 4.184 * 8.3 = 34.73 kJ/mol
Now, 34.73 kJ of heat is absorbed when 1 mole of KNO3 is dissolved
The given 105 kJ of heat would correspond to : 105/34.73 = 3.023 moles of KNO3
Molar mass of KNO3 = 101.1 g/mole
Mass of KNO3 = Molar mass * moles
= 101.1 * 3.023 = 305.63 g = 0.3056 kg
Answer:
In He2 molecule,
Atomic orbitals available for making Molecular Orbitals are 1s from each Helium. And total number of electrons available are 4.
Molecular Orbitals thus formed are:€1s2€*1s2
It means 2 electrons are in bonding molecular orbitals and 2 are in antibonding molecular orbitals .
Bond Order =Electrons in bonding molecular orbitals - electrons in antibonding molecular orbitals /2
Bond Order =Nb-Na/2
Bond Order =2-2/2=0
Since the bond order is zero so that He2 molecule does not exist.
Explanation:
<h2>question:How many significant figures are in 100.3</h2>
Answer:4