It's stored at the reactor site.
Answer; chemical reaction
Answer:
0.9612 g
Explanation:
First we <u>calculate how many moles are there in 3.00 g of CCl₃F</u>, using its <em>molar mass</em>:
- 3.00 g CCl₃F ÷ 137.37 g/mol = 0.0218 mol CCl₃F
Now, we need to calculate how many grams of N₂O would have that same number of molecules, or in other words, <em>the same amount of moles</em>.
Thus we <u>calculate how many grams would 0.0218 moles of N₂O weigh</u>, using the <em>molar mass of N₂O</em> :
- 0.0218 mol N₂O * 44.013 g/mol = 0.9612 g N₂O
Answer:
Final temperature = T₂ = 155.43 °C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of coin = 4.50 g
Heat absorbed = 54 cal
Initial temperature = 25 °C
Specific heat of copper = 0.092 cal/g °C
Final temperature = ?
Solution:
Q = m.c. ΔT
ΔT = T₂ -T₁
Q = m.c. T₂ -T₁
54 cal = 4.50 g × 0.092 cal/g °C × T₂ -25 °C
54 cal = 0.414 cal/ °C × T₂ -25 °C
54 cal /0.414 cal/ °C = T₂ -25 °C
130.43 °C = T₂ -25 °C
130.43 °C + 25 °C = T₂
155.43 °C = T₂
Answer:
Evaporation is slower, occurs only from the surface of the liquid, does not produce bubbles, and leads to cooling. Boiling is faster, can occur throughout the liquid, produces lots of bubbles, and does not result in cooling.