The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire which is 11(r) m/s.
<h3>
Angular velocity of the tire</h3>
The angular velocity of the tire is the rate of change of angular displacement of the tire with time.
The magnitude of the angular velocity of the tire is calculated as follows;
ω = 2πN
where;
- N is the number of revolutions per second
ω = 2π x (5.25 / 3)
ω = 11 rad/s
<h3>Tangential velocity of the tire</h3>
The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire.
The magnitude of the tangential velocity is caculated as follows;
v = ωr
where;
- r is the radius of the car's tire
v = 11r m/s
Learn more about tangential velocity here: brainly.com/question/25780931
Answer:
The change in height of the mercury is approximately 2.981 cm
Explanation:
Recall that the formula for thermal expansion in volume is:

from which we solved for the change in volume
due to a given change in temperature 
We can estimate the initial volume of the mercury in the spherical bulb of diameter 0.24 cm ( radius R = 0.12 cm) using the formula for the volume of a sphere:

Therefore, the change in volume with a change in temperature of 36°C becomes:

Now, we can use this difference in volume, to estimate the height of the cylinder of mercury with diameter 0.0045 cm (radius r= 0.00225 cm):

Answer:
to see the beautiful world
to focus the light onto the retina
Answer:
A 2 d vector model
The acceleration function is -9.8 m/s2 which is gravity
Initial velocity on the Y axis is 0, on the X axis is 12 m/s
Inital position is 20 mts above the ground.
It takes the water 1.01 seconds to reach the other building.
THe distace from one building to the other is 12.11 meters.
Explanation:
In order to solve this you just need to carefully read the problem and the data you are given, and use the formula for height in free fall:

So first the data, we know that the water is coming out at a height of 20 meters since the building is 19 meters tall and the fireman is holding the firehose 1 meter above it, and the water is hitting the second building at a height of 15 meters, that means that the water is travelin -5meters.
Gravity as it doesn´t say otherwise would be 9.8m/s2 since that is gravity on earth, and water is leaving the firehose at 12m/s horizontally.
We can calculate the time by using the height formula fro free fall:

So it takes 1.009 seconds for the water to frop from 20 to 15 meters, as the horizontal velocity remains the same we just multiply it by the time and we get the horizontal distance between the two buildings and that would be:
12.11 meters.