Answer:
The resistance that will provide this potential drop is 388.89 ohms.
Explanation:
Given;
Voltage source, E = 12 V
Voltage rating of the lamp, V = 5 V
Current through the lamp, I = 18 mA
Extra voltage or potential drop, IR = E- V
IR = 12 V - 5 V = 7 V
The resistance that will provide this potential drop (7 V) is calculated as follows:
IR = V

Therefore, the resistance that will provide this potential drop is 388.89 ohms.
Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s
Answer:
F = 1,875 N
Explanation:
force=

∆H = m∆V
where ∆H ----> change in momentum.
( final momentum - initial momentum )
and ∆V ----> change in velocity
( final velocity - initial velocity )
and m ----> is mass
then f =

= 1,875 N
Answer:
1. The magnet is magnetic and can attract iron articles.
2. The magnet has magnetic poles. Each magnet has two kinds of poles: N pole and S pole. They are in pairs.
3. Temporary magnet and permanent magnet: when the ferromagnetic material is magnetized, it is easy to lose the magnetic property, which is called temporary magnet (for example: iron); when the ferromagnetic material is magnetized, it is not easy to lose the magnetic property, which is called permanent magnet (for example: steel).
4. When two magnets are close to each other, the same poles will repel and push away from each other, and the different poles will attract and stick to each other. Therefore: the same pole repels each other, the different pole attracts each other.
5. The attraction of a magnetic object is called magnetism. An object is surrounded by a magnetic material. The area affected by the magnetic force is called the magnetic field.
Explanation:
(a) Frequency of radar energy, 
The relation between frequency and wavelength is given by :




or

(b) If wavelength, 




or
f = 1.2 GHz
Hence, this is the required solution.