First, we will get the resultant force:
The direction of the force due to the person's weight is vertically down.
weight of person = 700 newton
Assume that the force exerted by the arms has a vertically upwards direction.
Force exerted by arms = 2*355 = 710 newtons
Therefore, the resultant force = 710 - 700 = 10 newtons (in the vertically upwards direction)
Now, we will get the mass of the person.
weight = 700 newtons
weight = mass * acceleration due to gravity
700 = 9.8*mass
mass = 71.428 kg
Then we will calculate the acceleration of the resultant force:
Force = mass*acceleration
10 = 71.428*acceleration
acceleration = 0.14 m/sec^2
Finally, we will use the equation of motion to get the final speed of the person.
V^2 = U^2 + 2aS where:
V is the final velocity that we need to calculate
U is the initial velocity = 0 m/sec (person starts at rest)
a is the person's acceleration = 0.14 m/sec^2
S is the distance covered = 25 cm = 0.25 meters
Substitute with the givens in the above equation to get the final speed as follows:
V^2 = U^2 + 2aS
V^2 = (0)^2 + 2(0.14)(0.25)
V^2 = 0.07
V = 0.2645 m/sec
Based on the above calculations:
The person's speed at the given point is 0.2645 m/sec
Answer:
Explanation:
Given a ball of mass m= 0.5kg
The ball moves in as circle of radius r= 0.4m
Speed of the ball is v = 4m/s
Centripetal force is exerted on ball and it is given as
Fc = m•ac
ac is centripetal acceleration and it is given as
ac = v²/r
Then,
Fc = mv²/r
Fc = 0.5 × 4²/0.4
Fc = 20N.
The force exerted on the ball is 20N
It would be measured in newtons :)
Answer: 0.5334
Explanation:
i got it right on accellus :p
mass gram, time sec, temp kelvin, vol liter, dens grams/cm3