Answer:
t = 1.42 s and d = 35.5 m
Explanation:
Given that,
Velocity of a roadrunner is 25 m/s
A certain coyote wants to capture the roadrunner using a net dropped from an overpass that is 10 m high.
We need to find the time before the roadrunner is under the overpass and how far away from the overpass is the roadrunner when the coyote drops the net.

Let d is the distance traveled. So,
d = vt
d = 25 m/s × 1.42 s
d = 35.5 m
Answer:
The rock's speed after 5 seconds is 98 m/s.
Explanation:
A rock is dropped off a cliff.
It had an initial velocity of 0 m/s. And now it is moving downwards under the influence of gravitational force with the gravitational acceleration of 9.8 m/s².
Speed after 5 seconds = V
We know that acceleration = average speed/time
In our case,
g = ((0+V)/2)/5
9.8*5 = V/2
=> V = 2*9.8*5
V = 98 m/s
So there is a decimal after the last zero and it looks like this 5098000. You have to move the decimal point six back to get in between the five and the zero which looks like this 5.098000
<span>Scientific notation is the way that scientists easily handle very large numbers or very small numbers. For example, instead of writing 0.0000000056, we write 5.6 x 10^<span>9</span>.</span>
Being that we moved the decimal six places back the answer is 5.098 x 10^6
Bumper of a stationary bumper car. The momentum of the
stationary car increases. Which happens to the momentum of the moving bumper
car? It decreases. It stays the same. It is converted to inertia.
Bumper of a stationary bumper car. The momentum of the
stationary car increases. The momentum of the moving bumper car It is converted
to inertia.
41.2 = h-1/2g(t-1)^2
<span> {-h = -1/2gt^2-1/2g+g*t-41.2
</span><span> {h = 1/2gt^2
</span><span> summing them up
</span><span> 0 = -1/2g+g*t-41.2
</span><span> 41.2 +4.9 = g*t
</span><span> t = 46.1/9.8 = 4.70 sec
</span><span> h = 1/2gt^2 =4.9*(4.70^2) = 108.241 m </span>