Answer:
Explanation:
Payments (P) =1450
n = 30years; 30*12 months
APR(c) = 9%; 0.09/12 monthly = 0.0075
L - loan
P = L[c(1 + c)^n]/[(1 + c)^n - 1]
1450 = L[0.0075(1+0.0075)^360]/[(1+0.0075)^360 -1]
L = 180208.7
Balance loan
B = L[(1 + c)^n - (1 + c)p]/[(1 + c)^n - 1]
= 180208.7[(1+0.0075)^360 -(1+0.0075)1450]/[(1+0.0075)^360 -1]
= 172784.35
a. Monthly payments required on the new loan
APR = 6.625%; 0.00552 monthly
=172784.35* [0.00552*(1+0.00552)^360]/[(1+0.00552)^360 -1] = 1106.36
b. n = 25years; 300 months
P =172784.35* [0.00552(1+0.00552)^300]/[(1+0.00552)300 -1] = 1180.18
c.
1450 = 172784.35[0.0075(1+0.0075)^(n*12)]/[(1+0.0075)^(n*12) -1]
n = 16.23 years
d.
1450 =L[0.0075(1+0.0075)^300]/[(1+0.0075)^300 -1]
L = 212286.65
Additional cash = 212286.65 - 172784.35 = 39502.3