Answer:
C) The parabola is narrower and reflected across the x-axis.
Step-by-step explanation:
The original parabola has equation:
![f(x) = {x}^{2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%20%7Bx%7D%5E%7B2%7D%20)
The transformed parabola has equation
![f(x) = - 1.4 {x}^{2}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%20-%201.4%20%7Bx%7D%5E%7B2%7D%20)
How wide the graph is can be determined by the absolute value of the coefficient.
The smaller the absolute value of the coefficient, the wider the graph.
Since
![|1| \: < \: | - 1.4|](https://tex.z-dn.net/?f=%20%7C1%7C%20%20%5C%3A%20%20%3C%20%20%5C%3A%20%20%7C%20-%201.4%7C%20)
The original graph is wider than the transformed graph.
Also the negative factor tells us there is a reflection in the x-axis.