Good question. It like a fail safe,if you hit a car tail gate going slightly fast it come out to protect you from hitting your on the the wheel or the mirror. See if you don't have a seat belt or it just don't fully stop you the airbag might help.Like concussions. I Hope This Help you :)
Answer:

Explanation:
The total force on the particle is given by

Then, by replacing we have:
![q\vec{v}\ X \vec{B}=q[7\hat{k}-9\hat{j}-\hat{k}]\\\\q\vec{E}=q[5\hat{i}-\hat{j}-2\hat{k}]\\\\\vec{F}=(9.61*10^{-19}C)[(7+9)\hat{i}+(-9-1)\hat{j}+(-1-2)\hat{k}]\\\\\vec{F}=(1.537*10^{-17}\hat{i}-9.61*10^{-19}\hat{j}-2.883*10^{-18}\hat{k})N](https://tex.z-dn.net/?f=q%5Cvec%7Bv%7D%5C%20X%20%5Cvec%7BB%7D%3Dq%5B7%5Chat%7Bk%7D-9%5Chat%7Bj%7D-%5Chat%7Bk%7D%5D%5C%5C%5C%5Cq%5Cvec%7BE%7D%3Dq%5B5%5Chat%7Bi%7D-%5Chat%7Bj%7D-2%5Chat%7Bk%7D%5D%5C%5C%5C%5C%5Cvec%7BF%7D%3D%289.61%2A10%5E%7B-19%7DC%29%5B%287%2B9%29%5Chat%7Bi%7D%2B%28-9-1%29%5Chat%7Bj%7D%2B%28-1-2%29%5Chat%7Bk%7D%5D%5C%5C%5C%5C%5Cvec%7BF%7D%3D%281.537%2A10%5E%7B-17%7D%5Chat%7Bi%7D-9.61%2A10%5E%7B-19%7D%5Chat%7Bj%7D-2.883%2A10%5E%7B-18%7D%5Chat%7Bk%7D%29N)
where the cross product can be made with the determinant method.
Hope this helps!!
Hooke's Law states that the extension is directly proportional to the force applied so:
F/x = constant
F₁/x₁ = F₂/x₂
2 / 0.02 = 1600 / x₂
x₂ = 16 m
Elastic work = 1/2 Fx
= 1/2 * 1600 * 16
= 12.8 kJ
Answer:

Explanation:
Diffraction is observed when a wave is distorted by an obstacle whose dimensions are comparable to the wavelength. The simplest case corresponds to the Fraunhofer diffraction, in which the obstacle is a long, narrow slit, so we can ignore the effects of extremes.
This is a simple case, in which we can use the Fraunhofer single slit diffraction equation:

Where:

Solving for λ:

Replacing the data provided by the problem:
