14.136 J as shown on the photo with two thought processes but overall same calculation
Answer:
Bubbles paused
Explanation:
the air bubble doesn't rise because it is no lighter than the water around it—there's no buoyancy. The droplet doesn't fall from the leaf because there's no force to pull it off. It's stuck there by molecular adhesion.
for instance, onto the International Space Station, gravity becomes negligible, and the laws of physics act differently than here on Earth
On Earth, the buoyancy of the air bubbles causes them to rise to the top together, creating a segregation between air and water. However, in microgravity, nothing forces the air bubbles to interact and thus rise together, Green said.
The component that’s dissolved is called the solvent
To calculate the acceleration of the truck, we use the equation of motion

Here, v is final velocity of the truck, u is initial velocity of truck, a is acceleration of the truck and t is time taken.
Given, u = 6 m/s, v = 14 m/s and t = 4 s.
Substituting these values in above equation, we get
.
Thus, the truck acceleration is 
Answer:
414.9 m
Explanation:
First, become familiar with the horizontal, and vertical vector components.
Vertical vector: Vy = V × sin (θ).
Horizontal vector: Vx = V × cos(θ).
Distance traveled = Velocity vector × time in the air.
Time in the air given Vy = 2 × Vy / g (in respect to the metric of the vector).
Range of the projectile = Vx² / g
Time in the air given Vx = (Vx + √(Vx)² + 2gh) / g.
Given a 28° angle with an initial velocity of 70m/s, we have enough information to calculate!
Vx = 70 m/s × cos(28°) ≈ 61.806 m/s
Vy = 70 m/s × sin(28°) ≈ 32.863 m/s
t = 2 × Vy / g
t = 2 × ≈32.863 / 9.8
t = ≈65.726 / 9.8
t ≈ 6.7 s
Distance traveled (horizontal) = Vx × t = 61.806 × 6.7 ≈ 414.9 m