Answer:
the time taken t is 9.25 minutes
Explanation:
Given the data in the question;
The initial charge on the supercapacitor = 2.1 × 10³ mV = 2.1 V
now, every minute, the charge lost is 9.9 %
so we need to find the time for which the charge drops below 800 mV or 0.8 V
to get the time, we can use the formula for compound interest in basic mathematics;
A = P × ( (1 - r/100 )ⁿ
where A IS 0.8, P is 2.1, r is 9.9
so we substitute
0.8 = 2.1 × ( 1 - 0.099 )ⁿ
0.8/2.1 = 0.901ⁿ
0.901ⁿ = 0.381
n = 9.25 minutes
Therefore, the time taken t is 9.25 minutes
High school???
No way
It's work.
Answer:
Explanation:
The tidal current flows to the east at 2.0 m/s and the speed of the kayaker is 3.0 m/s.
Let Vector
is the tidal current velocity as shown in the diagram.
In order to travel straight across the harbor, the vector addition of both the velocities (i.e the resultant velocity,
must be in the north direction.
Let
is the speed of the kayaker having angle \theta measured north of east as shown in the figure.
For the resultant velocity in the north direction, the tail of the vector
and head of the vector
must lie on the north-south line.
Now, for this condition, from the triangle OAB




Hence, the kayaker must paddle in the direction of
in the north of east direction.
Answer:
The work and heat transfer for this process is = 270.588 kJ
Explanation:
Take properties of air from an ideal gas table. R = 0.287 kJ/kg-k
The Pressure-Volume relation is <em>PV</em> = <em>C</em>
<em>T = C </em> for isothermal process
Calculating for the work done in isothermal process
<em>W</em> = <em>P</em>₁<em>V</em>₁ ![ln[\frac{P_{1} }{P_{2} }]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7BP_%7B1%7D%20%7D%7BP_%7B2%7D%20%7D%5D)
= <em>mRT</em>₁
[∵<em>pV</em> = <em>mRT</em>]
= (5) (0.287) (272.039) ![ln[\frac{2.0}{1.0}]](https://tex.z-dn.net/?f=ln%5B%5Cfrac%7B2.0%7D%7B1.0%7D%5D)
= 270.588 kJ
Since the process is isothermal, Internal energy change is zero
Δ<em>U</em> = 
From 1st law of thermodynamics
Q = Δ<em>U </em>+ <em>W</em>
= 0 + 270.588
= 270.588 kJ
Answer:
1.84 kJ (kilojoules)
Explanation:
A specific heat of 0.46 J/g Cº means that it takes 0.46 Joules of energy to raise the temperature of 1 gram of iron by 1 Cº.
If we want to heat 50 g of iron from 20° C to 100° C, we can make the following calculation:
Heat = (specific heat)*(mass)*(temp change)
Heat = (0.46 J/g Cº)*(50g)*(100° C - 20° C)
[Note how the units cancel to yield just Joules]
Heat = 1840 Joules, or 1.84 kJ
[Note that the number is positive: Energy is added to the system. If we used cold iron to cool 50g of 100° C water, the temperature change would be (Final - Initial) or (20° C - 100° C). The number is -1.84 kJ: the negative means heat was removed from the system (the iron).