Answer:
Low satellite has high orbital velocity
Explanation:
let v be the orbital speed of the satellite orbiting at a height h is given by

where, M be the mass of planet, r be the radius of planet and h be the height of planet from the surface of planet.
here we observe that more be the height lesser be the orbital velocity.
So, a satellite which is at low height has high orbital velocity.
Answer:
0.785 m/s
Explanation:
Hi!
To solve this problem we will use the equation of motion of the harmonic oscillator, <em>i.e.</em>
- (1)
- (1)
The problem say us that the spring is released from rest when the spring is stretched by 0.100 m, this condition is given as:


Since cos(0)=1 and sin(0) = 0:


We get

Now it say that after 0.4s the weigth reaches zero speed. This will happen when the sping shrinks by 0.100. This condition is written as:

Since

This is the same as:

We know that cosine equals to -1 when its argument is equal to:
(2n+1)π
With n an integer
The first time should happen when n=0
Therefore:
π = 0.4ω
or
ω = π/0.4 -- (2)
Now, the maximum speed will be reached when the potential energy is zero, <em>i.e. </em>when the sping is not stretched, that is when x = 0
With this info we will know at what time it happens:

The first time that the cosine is equal to zero is when its argument is equal to π/2
<em>i.e.</em>

And the velocity at that time is:

But sin(π/2) = 1.
Therefore, using eq(2):

And so:

In order to decrease the friction on the slide,
we could try some of these:
-- Install a drippy pipe across the top that keeps continuously
dripping olive oil on the top end of the slide. The oil oozes
down the slide and keeps the whole slide greased.
-- Hire a man to spread a coat of butter on the whole slide,
every 30 minutes.
-- Spray the whole slide with soapy sudsy water, every 30 minutes.
-- Drill a million holes in the slide,and pump high-pressure air
through the holes. Make the slide like an air hockey table.
-- Keep the slide very cold, and keep spraying it with a fine mist
of water. The water freezes, and a thin coating of ice stays on
the slide.
-- Ask a local auto mechanic to please, every time he changes
the oil in somebody's car, to keep all the old oil, and once a week
to bring his old oil to the park, to spread on the slide. If it keeps
the inside of a hot car engine slippery, it should do a great job
keeping a simple park slide slippery.
-- Keep a thousand pairs of teflon pants near the bottom of the ladder
at the beginning of the slide. Anybody who wants to slide faster can
borrow a set of teflon pants, put them on before he uses the slide, and
return them when he's ready to go home from the park.
Answer:
The work done is 0.
Explanation:
The reason no work is done is because the equation W = Fs.
W = work
F= force
s= displacement
In this scenario F = 50 and s= 0
Therefore.
W = 50(0)
W = 0
Angle, θ2 at which the light leaves mirror 2 is 56°
<u>Explanation:</u>
Given-
θ1 = 64°
So, α will also be 64°
According to the figure:
α + β = 90°
So,
β = 90° - α
= 90° - 64°
= 26°
β + γ + 120° = 180°
γ = 180° - 120° - β
γ = 180° - 120° - 26°
γ = 34°
γ + δ = 90°
δ = 90° - γ
δ = 90° - 34°
δ = 56°
According to the law of reflection,
angle of incidence = angle of reflection
θ2 = δ = 56°
Therefore, angle θ2 at which the light leaves mirror 2 is 56°