A solar eclipse occurs when the moon crosses in front of the Sun, blocking some or all of its rays. A lunar eclipse happens when the moon is directly behind the earth, blocking the moon from receiving light. The only light comes from the light on earth's reflected shadow.
You can look at a lunar eclipse because there is very little light or none at all. You can't look at a solar eclipse because you are looking directly at the sun unless it is complete. Before totality, only some of the Sun is blocked, causing your pupils dilate to let in more light. Since they do this, more of the Sun's rays can be let in to the eye, which effectively allows your eyes to burn.
Some doctors and eye care specialists say that after someone complains of blindness after looking at a solar eclipse unaided, they can see what the Sun and moon looked like at the time that they looked at it, as it is burned onto their retinas.
<u>Answer:</u>
<em>1. A NaCl solution with a concentration of 50g/100mL of water at 40°C:</em> The NaCl solution with a given concentration is saturated at this temperature .As the temperature increases the solution will more dissolves.
<em>2. A sugar solution with a concentration of 200g/100mL of water at 40°C: </em>The sugar solution with a given concentration is saturated at this temperature. As the temperature increases the solution will more dissolves.
<em>3. A sugar solution with a concentration of 240g/100mL of water at 40°C:</em> The sugar solution with a given concentration is saturated at given temperature.
Answer:
First of all the formula is F= uR,( force= static friction× reaction)
mass= 5+25=30
F= 50
R= mg(30×10)=300
u= ?
F=UR
u= F/R
u= 50/300=0.17N
Answer:A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 45.0 N at an…
Explanation:
Answer:
B, C and E
Explanation:
The unit of resistance in the international system is the Ohm, the equation that describes the resistance is:

Where (l) is for lenght of the wire, (S) is the area and (p) its the constant associated to the conductor.
It's related by the Ohm's Law:
