Answer:
b. Relates the electric field at points on a closed surface to the net charge enclosed by that surface
Explanation:
Gauss's law states that the flux of certain fields through a closed surface is proportional to the magnitude of the sources of that field within the same surface. The electric flux expresses the measure of the electric field that crosses a certain surface. Therefore, the electric field on a closed surface is proportional to the net charge enclosed by that surface.
Answer:
The manufacturer of a 9V dry-cell flashlight battery says that the battery will deliver 20 mA for 80 continuous hours. During that time the voltage will drop from 9V to 6V. Assume the drop in voltage is linear with time. How much energy does the battery deliver in this 80 h interval?
Explanation:
Answer:a) 34.5 N; b) 24.5 N; c) 10 N; d) 1J
Explanation: In order to solve this problem we have to used the second Newton law given by:
∑F= m*a
F-f=m*a where f is the friction force (uk*Normal), from this we have
F= m*a+f=5 Kg*2 m/s^2+0.5*5Kg*9.8 m/s^2= 34.5 N
then f=uk*N=0.5*5Kg*9.8 m/s^2= 24.5N
the net Force = (34.5-24.5)N= 10 N
Finally the work done by the net force is equal to kinetic energy change so
W=∫Force net*dr= 10 N* 0.1 m= 1J
Weight=mg
g=GM/r^2
g on venus is 0.80w as radius is kept constant
m of object is kept constant
w α g
w(venus( is 0.8w