Adding Integers
If the numbers that you are adding have the same sign, then add the numbers and keep the sign.
Example:
-5 + (-6) = -11
Adding Numbers with Different Signs
If the numbers that you are adding have different (opposite) signs, then SUBTRACT the numbers and take the sign of the number with the largest absolute value.
Examples:
-6 + 5= -1
12 + (-4) = 8
Subtracting Integers
When subtracting integers, I use one main rule and that is to rewrite the subtracting problem as an addition problem. Then use the addition rules.
When you subtract, you are really adding the opposite, so I use theKeep-Change-Change rule.
The Keep-Change-Change rule means:
Keep the first number the same.
Change the minus sign to a plus sign.
Change the sign of the second number to its opposite.
Example:
12 - (-5) =
12 + 5 = 17
Multiplying and Dividing Integers
The great thing about multiplying and dividing integers is that there is two rules and they apply to both multiplication and division!
Again, you must analyze the signs of the numbers that you are multiplying or dividing.
The rules are:
If the signs are the same, then the answer is positive.
If the signs are different, then then answer is negative.
Answer:
not all rectangles are paralloelograms.
Step-by-step explanation:
The accurate definition is that the circle that's closest to the 2 dimensional figure where all the set of point in the plane should be equal distance.
<h3>How to illustrate a circle?</h3>
A circle simply means the set of all the points that are the same distance from a given point.
In this case, the contradiction is that the definition should be applied to three dimensional space so that it will be a sphere.
The accurate definition is that the circle that's closest to the 2 dimensional figure where all the set of point in the plane should be equal distance. A example is a point or line.
Learn more about circle on:
brainly.com/question/24375372
#SPJ1
Answer:
The answer is A) -9.272
Step-by-step explanation:
-5.872 + (-5.1)/1.5
= -5.872 - 3.4
= -9.272