Answer:
A. The energy stored in atmospheric carbon dioxide is conserved because it is used to create new forms of energy present in decomposed plants.
Explanation:
In the carbon cycle image, the result of an industry's work releases carbon dioxide into the atmosphere (this is represented by the letter G), this carbon dioxide is stored in the atmosphere (letter C) and then absorbed by plants during the process. of photosynthesis (letter A).
The carbon cycle is constituted by the absorption of carbon dioxide by plants in the photosynthesis process. Half of this absorbed carbon is released into the atmosphere and the other half the vegetable uses to produce sugars (glycoses). By ingesting the plants, the animals ingest together the carbon to their body, being released through respiration or decomposition. Because some fungi and bacteria are responsible for the decomposition of both animals and vegetables, they ingest part of this carbon, releasing it into the atmosphere and soil. In addition to bacteria, the burning process also releases carbon dioxide into the soil and atmosphere. Vegetables, through the breathing process, also absorb carbon dioxide and release oxygen unlike animals.
You must burn 1.17 g C to obtain 2.21 L CO2 at
STP.
The balanced chemical equation is
C+02+ CO2.
Step 1. Convert litres of CO, to moles of CO2.
STP is 0 °C and 1 bar. At STP the volume of 1 mol
of an ideal gas is 22.71 L.
Moles of CO2= 2.21 L CO2 × (1 mol CO2/22.71 L
CO2) = 0.097 31 mol CO2
Step 2. Use the molar ratio of C:CO2 to convert
moles of CO to moles of C
Moles of C= 0.097 31mol CO2 × (1 mol C/1 mol
CO2) = 0.097 31mol C
Step 3. Use the molar mass of C to calculate the
mass of C
Mass of C= 0.097 31mol C × (12.01 g C/1 mol C) =
1.17 g C
It looks as if you are using the old (pre-1982)
definition of STP. That definition gives a value of
1.18 g C.
Solids are usually more dense than liquids and gases.
Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.