Cell wall is a worker because it allows water and sugar in and out (atp)
There’s no other degenerate s orbital because the there can be only one s orbital for any value of n.
Answer:
2.87 gram
N2 is the limiting agent
Explanation:
We will find out if there is sufficient N2 and h2 to produce NH3
a) For 2.36 grams of N2
Molar mass of N2 = 28.02
Number of moles of N2 in 2.36 grams = 2.36/28.02
Mass of NH3 = 17.034 g
Now NH3 produced form 2.36 grams of N2 =
2.36/28.02 * 2 * 17.034 = 2.87 g NH3
b) For 1.52 g of H2
NH3 produced = 1.52/2.016 * (2/3) * 17.034 = 8.56
N2 Is not enough to produce 2.87 g of NH3 and also H2 is not enough to make 8.56 g of NH3.
N2 is the limiting agent as it has smaller product mass
Answer:
P = 14.1 atm
Explanation:
Given data:
Mass of methane = 64 g
pressure exerted by water vapors = ?
Volume of engine = 24.0 L
Temperature = 515 K
Solution:
Chemical equation:
CH₄ + 2O₂ → CO₂ + 2H₂O + energy
Number of moles of methane:
Number of moles = mass / molar mass
number of moles = 64 g/ 16 g/mol
Number of moles = 4 mol
Now we will compare the moles of water vapors and methane.
CH₄ : H₂O
1 : 2
4 : 2/1×4 = 8 mol
Pressure of water vapors:
PV = nRT
R = general gas constant = 0.0821 atm.L/mol.K
P = 8 mol × 0.0821 atm.L/mol.K× 515 K / 24.0 L
P = 338.25 atm.L/ / 24.0 L
P = 14.1 atm
Answer:
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M
Explanation:
Step 1: Data given
Molarity of Na2CrO4 = 0.010 M
Molarity of NaBr = 2.5 M
Ksp(PbCrO4) = 1.8 * 10^–14
Ksp(PbBr2) = 6.3 * 10^–6
Step 2: The balanced equation
PbCrO4 →Pb^2+ + CrO4^2-
PbBr2 → Pb^2+ + 2Br-
Step 3: Define Ksp
Ksp PbCrO4 = [Pb^2+]*[CrO4^2-]
1.8*10^-14 = [Pb^2+] * 0.010 M
[Pb^2+] = 1.8*10^-14 /0.010
[Pb^2+] = 1.8*10^-12 M
The minimum [Pb^2+] needed to precipitate PbCrO4 is 1.8*10^-12 M
Ksp PbBr2 = [Pb^2+][Br-]²
6.3 * 10^–6 = [Pb^2+] (2.5)²
[Pb^2+] = 1*10^-6 M
The minimum [Pb^2+] needed to precipitate PbBr2 is 1*10^-6 M
This means the amount of PbCrO4 will precipitate first, with a [Pb^2+] concentration of 1.8*10^-12 M