1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ne4ueva [31]
2 years ago
15

Someone help me with this ASAP!!

Physics
2 answers:
vladimir2022 [97]2 years ago
5 0
The answer is the following:
Water vapor in the air cools and forms clouds.
Natasha_Volkova [10]2 years ago
5 0
It's the plants release carbon dioxide
You might be interested in
Which pair of quantities includes one quantity that increases as the other decreases during simple harmonic motion?
11111nata11111 [884]

Kinetic energy and potential energy pair is the quantity in which one will increase then other will decrease

As we know that sum of kinetic energy and potential energy will always remain conserved

So here we will have

KE + PE = constant

so here as we move away from mean position the kinetic energy will decrease while at the same time potential energy will increase.

So the pair of potential energy and kinetic energy will satisfy the above condition

7 0
3 years ago
Read 2 more answers
When is your weight is equal to mg?<br>​
Vinil7 [7]

Answer:

The weight of an object is defined as the force of gravity on the object and may be calculated as the mass times the acceleration of gravity, w = mg.

6 0
3 years ago
Read 2 more answers
Please someone help, I’m very confused and it’s due soon, thanks
Anit [1.1K]

Answer:

  1. 1 s
  2. 19.6 m
  3. 2 s
  4. 0.8 m/s^2
  5. 28 m/s
  6. 79 m/s
  7. 0.37 s
  8. 26 m/s
  9. 242 m/s
  10. 19,930 m

Explanation:

In physics, many of the relationships between speed, distance, and acceleration are tied up in the equations for potential and kinetic energy. For an object of mass M* at height h in a gravity field with acceleration g, the potential energy is

  PE = Mgh

At velocity v, the kinetic energy of the object is ...

  KE = 1/2Mv^2

When an object is dropped or launched from rest, the height and velocity are related by the fact that kinetic energy gets translated to potential energy, or vice versa. This gives rise to ...

  PE = KE

  Mgh = (1/2)Mv^2

The mass (M) can be factored out of this, so we have ...

  2gh = v^2

This can be solved for height:

  h = v^2/(2g) . . . . [eq1]

or for velocity:

  v = √(2gh) . . . . [eq2]

__

When acceleration is constant, as assumed here, the velocity changes linearly (to/from 0). So, over the time of travel, the average velocity is half the final velocity. That is,

  t = 2h/v

Depending on whether you start with h or with v, this resolves to two more equations:

  t = 2(v^2/(2g))/v = v/g . . . . [eq3]

  t = 2h/(√(2gh)) = √(4h^2/(2gh)) = √(2h/g) . . . . [eq4]

The last of these can be rearranged to give distance as a function of time:

  h = gt^2/2 . . . . [eq5]

or acceleration as a function of time and distance:

  g = 2h/t^2 . . . . [eq6]

__

These 6 equations can be used to solve the problems posed. Just "plug and chug." For problems in Earth's gravity, we use g=9.8 m/s^2. (You may want to keep these equations handy. Be aware of the assumptions they make.)

_____

* M is used for mass in these equations so as not to get confused with m, which is used for meters.

_____

1) Use [eq4]: t = √(2·6 m/(9.8 m/s^2)) ≈ 1.107 s ≈ 1 s

__

2) Use [eq5]: h = (9.8 m/s^2)(2 s)^2/2 = 19.6 m

__

3) Use [eq4]: t = √(25 m/(4.9 m/s^2)) ≈ 2.259 s ≈ 2 s

__

4) Use [eq6]: g = 2(10 m)/(5 s)^2 = 0.8 m/s^2

__

5) Use [eq2]: v = √(2·9.8 m/s^2·40 m) = 28 m/s

__

6) Use [eq2]: v = √(2·9.8 m/s^2·321 m) ≈ 79.32 m/s ≈ 79 m/s

__

7) Using equation [eq3], we will find the time until Tina reaches her maximum height. Her actual off-the-ground total time is double this value. Using [eq3]: t = v/g = (1.8 m/s)/(9.8 m/s^2) = 9/49 s. Tina is in the air for double this time:

  2(9/49 s) ≈ 0.37 s

__

8) Use [eq2]: v = √(2·9.8 m/s^2·33.5 m) ≈ 25.624 m/s ≈ 26 m/s

__

9) Use [eq2]: v = √(2·9.8·3000) m/s ≈ 242.49 m/s ≈ 242 m/s

(Note: the terminal velocity in air is a lot lower than this for an object like a house.)

__

10) Use [eq1]: h = (625 m/s)^2/(2·9.8 m/s^2) ≈ 19,930 m

_____

<em>Additional comment</em>

Since all these questions make use of the same equation development, I have elected to answer them. Your questions are more likely to be answered if you restrict your posts to 3 or fewer questions each.

5 0
3 years ago
A girl on a bike is moving at a speed of 1.40 m/s at the start of a 2.45 m high and 12.4 m long incline. The total mass is 60.0
Scrat [10]

Answer:

Explanation:

Given that,

Initial speed of the girl is

u = 1.4m/s

Height she is going is

H = 2.45m

Incline plane she will pass to that height

L = 12.4m

Mass of girl and bicycle is

M=60kg

Frictional force that oppose motion is

Fr = 41N

Speed at lower end of inclined plane

V2 = 6.7m/s

Work done by the girl when the car travel downward

Using conservation of energy

K.E(top) + P.E(top) + work = K.E(bottom) + P.E(bottom) + Wfr

Where Wfr is work done by friction

Wfr = Fr × d

P.E(bottom) is zero, sicne the height is zero at the ground

K.E is given as ½mv²

Then,

½M•u² + MgH + W = ½M•V2² + 0 + Fr×d

½ × 60 × 1.4² + 60×9.8 × 2.45 + W = ½ × 60 × 6.7² + 41 × 12.4

58.8 + 1440.5 + W = 1855.1

W = 1885.1 —58.8 —1440.5

W = 355.8 J

8 0
3 years ago
A tin can is partially filled with water and heated so that the water boils for some time. Explain what happens to the can when
kozerog [31]
It gets smaller and lower in the tin can
7 0
2 years ago
Other questions:
  • The change in position is known as
    13·1 answer
  • Can You Please Help Me<br> Gravity &amp; Inertia<br> Why don’t we see the ground coming toward us?
    11·1 answer
  • B. How can you tell where sugar enters the blood?
    13·1 answer
  • Two vectors, X and Y, form a right angle. Vector X is 48 inches long and vector Y is 14 inches long. The length of the
    11·1 answer
  • Which of the following did not occur during the collapse of the solar nebula?
    12·1 answer
  • Raindrops fall vertically at 7.5 m/s relative to the Earth. What does an observer in a car moving at 20.2 m/s in a straight line
    9·1 answer
  • Can the volume of a gas be measured?
    8·1 answer
  • A 50.0 g projectile is launched with a horizontal velocity of 657 m/s from a 4.65 kg launcher moving in the same direction at 2.
    10·1 answer
  • A racing car has a mass of 1525kg. What is its kinetic energy if it has a speed of 108km/h
    7·1 answer
  • At maximum height, the velocity is zero.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!