Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that force on the passenger while moving in circle is given as

now variation in force is given as

here speed is constant
Part b)
Now if the variation in force is required such that r is constant then we will have

so we have

Part c)
As we know that time period of the circular motion is given as

so here if radius is constant then variation in time period is given as

"The process used by scientific investigations is the scientific method. This involves making an observation, stating a question, formulating a hypothesis, conducting an experiment and analyzing the results to form a conclusion. "
I would most likely go with B. but im not 100% sure
Answer:
This is because the force of gravity is much less on the moon than on the earth, therefore the person wont be pulled down much and will jump higher
Jemima is running with a velocity of 5m/s. She has a mass of 65kg, what is her kinetic energy would be 812.5 Joules.
<h3>What is mechanical energy?</h3>
Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
As given in the problem we have to calculate the Kinetic energy of the Jemima,
Kinetic energy = 1/2 ×mass×velocity²
=0.5×65×5²
=812.5 Joules
Thus, the kinetic energy of the Jemima would be 812.5 Joules.
To learn more about mechanical energy, refer to the link;
brainly.com/question/12319302
#SPJ1
Relative to the floor it's resting on, its height is zero,
so its potential energy is zero.
Relative to the next floor down, its height could be
three or four meters, and it could have plenty of
potential energy ... if you cut out a circle in the floor
all around the rock, and let it fall to next floor down,
it could really do some damage. Look out below ! !