Answer: The height above the release point is 2.96 meters.
Explanation:
The acceleration of the ball is the gravitational acceleration in the y axis.
A = (0, -9.8m/s^)
For the velocity we can integrate over time and get:
V(t) = (9.20m/s*cos(69°), -9.8m/s^2*t + 9.20m/s^2*sin(69°))
for the position we can integrate it again over time, but this time we do not have any integration constant because the initial position of the ball will be (0,0)
P(t) = (9.20*cos(69°)*t, -4.9m/s^2*t^2 + 9.20m/s^2*sin(69°)*t)
now, the time at wich the horizontal displacement is 4.22 m will be:
4.22m = 9.20*cos(69°)*t
t = (4.22/ 9.20*cos(69°)) = 1.28s
Now we evaluate the y-position in this time:
h = -4.9m/s^2*(1.28s)^2 + 9.20m/s^2*sin(69°)*1.28s = 2.96m
The height above the release point is 2.96 meters.
Answer:
Dx = -0.5
Dy = -0.25
Explanation:
Two vectors are given in rectangular components form as follows:
A = i + 6j
B = 3i - 7j
It is also given that:
A - B - 4D = 0
so, we solve this to find D vector:
(i + 6j) - (3i - 7j) - 4D = 0
- 2i - j = 4D
D = - (2/4)i - (1/4)j
D = - (1/2)i - (1/4)j
<u>D = - 0.5i - 0.25j</u>
Therefore,
<u>Dx = -0.5</u>
<u>Dy = -0.25</u>
The answer is magnet away from the coil
Answer:
Explanation:
In physics, a conservation law states that a particular measurable property of an isolated physical system does not change as the system evolves over time. The exact conservation laws include conservation of energy, and conservation of linear momentum, and also conservation of angular momentum, aswell as the conservation of electric charge
The answer is A. <span>The component waves have different frequencies.
The magnitudes of reinforcement usually really dependent on the number of frequencies and interference is usually caused due to the difference in frequencies. So, we can conclude that if the frequencies are different and causing interference, the reinforcement will also different
</span>