We know the formulas for momentum and energy. But they both involve the mass of
the object, and we don't know the mass of the baseball. What can we do ?
It's not a catastrophe. The question only asks which one is bigger. If we're clever,
we can answer that without ever knowing how much the momentum or the energy
actually is. We know that both baseballs have the same mass, so let's just call it
' M ' and not worry about what it really is.
<u>Momentum of anything = (mass) x (speed)</u>
Momentum of the first baseball = (M) x (4 m/s) = 4M
Momentum of the second one = (M) x (16 m/s) = 16M
The second baseball has 4 times as much momentum as the first one has.
<u>Kinetic energy of anything = 1/2 (mass) x (speed squared)</u>
KE of the first baseball = 1/2 (M) x (4 squared) = 8M
KE of the second one = 1/2 (M) x (16 squared) = 128M
The second baseball has 16 times as much kinetic energy as the first one has.
Answer:
Va = 5000 m / 3600 s = 1.39 m/s
(Va - Vb) 60 = 10
Vb = Va - .167 = 1.22 m/s
(Va - Vb) T = 4200 Π where T is time for A to complete 1 more lap
.17 T = 4200 Π
T = 24700 Π time for A to again catch B
N = 1.39 * 24700 Answer:
Va = 5000 m / 3600 s = 1.39 m/s
(Va - Vb) 60 = 10
Vb = Va - .167 = 1.22 m/s
(Va - Vb) T = 4200 Π where T is time for A to complete 1 more lap
.17 T = 4200 Π
T = 24700 Π time for A to again catch B
N = 1.39 * 24700 Π / (4200 Π) = 8.2 laps
A will make 8 but not 9 rounds before catching B
Answer:
The speed of the particle is 2.86 m/s
Explanation:
Given;
radius of the circular path, r = 2.0 m
tangential acceleration,
= 4.4 m/s²
total magnitude of the acceleration, a = 6.0 m/s²
Total acceleration is the vector sum of tangential acceleration and radial acceleration

where;
is the radial acceleration

The radial acceleration relates to speed of particle in the following equations;

where;
v is the speed of the particle

Therefore, the speed of the particle is 2.86 m/s
As it is outside the focal point it must be real.Real images must be inverted.
As it is beyond the centre of curvature it is also beyond 2F which means that the image is inside the centre of curvature ( between F and 2F from the mirror ) As the image is closer to the mirror than the object it must be diminished in size.
Hope this helps you :)
Answer:
6000 kilometers
Explanation:
multiply the length value by 1000