Answer:
The correct answer is Option
B. A homogeneous mixture
Explanation: Mixture is solution which is made of two or more than two substances which are combined only physically not chemically. There are two types of mixture i. e. Homogeneous mixture and heterogeneous mixture. Homogeneous mixture is a mixture in which the substances which are combined are uniform in appearance and heterogeneous mixture is a mixture in which substances are suspended in the solution and easily differentiated.
Answer:
1. C + O₂ → CO₂
2. C + CO₂ → 2 CO
3. Fe₂O₃ + 3 CO → 2 Fe + 3 CO₂
Answer:
18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Explanation:
Mercury oxide has molar mass of 216.6 g/ mol. It gas a molecular formula of HgO.
The decomposition of mercury oxide is given by the chemical equation below:
2HgO ----> 2Hg + O₂
2 moles of HgO decomposes to produce 1 mole of Hg
2 moles of HgO has a mass of 433.2 g
433.2 g of HgO produces 216.6 g of Hg
18.0 of HgO will produce 18 × 216.6/433.2 g of Hg = 9.0 g of Hg
Therefore, 18.0 g of mercury (11) oxide decomposes to produce 9.0 grams of mercury
Answer:
Coulomb's law, mathematical description of the electric force between charged objects. Formulated by the 18th-century French physicist Charles-Augustin de Coulomb, it is analogous to Isaac Newton's law of gravity.
Explanation:
Soo yeah I think this can help you
Answer:
The three-step synthesis of trans-2-pentene from acetylene is as follows.
<u>Step -1:</u> Formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkanes.
<u>Step -2:</u> Formation terminal alkyne to nonterminal alkynes.
<u>Step -3:</u> Formation of trans-pent - 2-pent-ene by reduction.
Explanation:
Synthesis of trans-pent-2-yne from ethyne takes place is mainly a three step synthesis which involves formation of higher order terminal alkyne on reaction with sodium acetylides with haloalkane. Second step involves the further alkylation of terminal alkynes to higher order nonterminal alkynes and the third step involves the formation of trans-2-ene by dissolving reduction method.
The chemical reaction of each step of chemical reactions is as follows.