9*
m
Explanation:
Step 1:
We are given the initial length of the Pyrex glass dish at a particular temperature and need to calculate the change in the length when the temperature changes by 120° C. The coefficient of linear expansion of Pyrex is provided.
Step 2:
Change in length = Coefficient of linear expansion * Change in temperature * Initial length
Step 3:
Coefficient of linear expansion = 3*
/°C
Change in temperature = 120°C = 120 K
Initial length = 0.25 m
Step 4:
Change in length = 3*
* 120 * 0.25 = 9*
m
Answer:
Different and better?
Explanation:
i dont think that helps lol
Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
<u>Answer:</u> The final temperature of the solution is 
<u>Explanation:</u>
The amount of heat released by coffee will be absorbed by aluminium spoon.
Thus, 
To calculate the amount of heat released or absorbed, we use the equation:

Also,
..........(1)
where,
q = heat absorbed or released
= mass of aluminium = 39 g
= mass of coffee = 166 g
= final temperature = ?
= temperature of aluminium = 
= temperature of coffee = 
= specific heat of aluminium = 
= specific heat of coffee= 
Putting all the values in equation 1, we get:
![39\times 0.904\times (T_{final}-24)=-[166\times 4.1801\times (T_{final}-83)]](https://tex.z-dn.net/?f=39%5Ctimes%200.904%5Ctimes%20%28T_%7Bfinal%7D-24%29%3D-%5B166%5Ctimes%204.1801%5Ctimes%20%28T_%7Bfinal%7D-83%29%5D)

Hence, the final temperature of the solution is 