The so-called "terminal velocity" is the fastest that something can fall
through a fluid. Even though there's a constant force pulling it through,
the friction or resistance of plowing through the surrounding substance
gets bigger as the speed grows, so there's some speed where the resistance
is equal to the pulling force, and then the falling object can't go any faster.
A few examples:
-- the terminal velocity of a sky-diver falling through air,
-- the terminal velocity of a pecan falling through honey,
-- the terminal velocity of a stone falling through water.
It's not possible to say that "the terminal velocity is ----- miles per hour".
If any of these things changes, then the terminal velocity changes too:
-- weight of the falling object
-- shape of the object
-- surface texture (smoothness) of the object
-- density of the surrounding fluid
-- viscosity of the surrounding fluid .
Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (
,
,
,
)
(2)
Free fall (
,
,
,
)
(3)
Now we created the graph speed-time, which can be seen below.
In a series circuit the total current is the same throughout resistors and so:

The voltage is distributed throughout the resistors and so:

and the total resistance can be calculated by adding up the resistors resistance:

First thing is to calculate the total resistance and so:

And by Omh's law V=IR we have:

And so the total current of the circuit is 1.2 amps i.e. 1.2 A.
Answer:
depth of well is 163.30 m
Explanation:
Given data
speed of sound = 343 m/s
timer = 6.25 s
to find out
depth of well
solution
let us consider depth d
so equation will be
depth = 1/2 ×g ×t² ..............1
and
depth = velocity of sound × time .................2
here we have given time 6.25 that is sum of 2 time
when stone reach at bottom that time
another is sound reach us after stone strike on bottom
so time 1 + time 2 = 6.25 s
so from equation 1 and 2 we get
1/2 ×g ×t² = velocity of sound × time
1/2 ×9.8 × t1² = 343 × (6.25 - t1 )
t1 = 5.77376 sec
so height = 1/2 ×g ×t²
height = 1/2 ×9.8 × (5.773)²
height = 163.30 m