1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
14

Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange

r where it is cooled at constant pressure to 300 K through heat transfer with the ambient. It then expands adiabatically to 1.0 bar through a turbine and is discharged into the cabin. The turbine has an isentropic efficiency of 80%.
If the mass flow rate of the air is 2.5 kg/s, determine:

(a) the power developed by the turbine, in kw.
(b) the magnitude of the rate of heat transfer from the air to the ambient, in kw
Engineering
2 answers:
Naddika [18.5K]3 years ago
6 0

Answer:

a) 132.89 kW

b) 251.25 kW

Explanation:

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M} c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To evaluate the temperature at 80% efficiency, we will use the following method:

\eta_{t} = \frac{T_{2} - T_{3} }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3} }{300 - 230.9 }

T₃ = 244.72 K

The power developed by the turbine is given by the relation:

\dot{W} = \dot{M} c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

b)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

We going to the steady flow energy equation using this equation:

Q_{1-2} = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2} = 2.5 * 1.005 * (300 - 400)\\Q_{1-2} = -251.25 kW

Hence, the magnitude of the rate of heat transfer from the air to the ambient, in is going to be kw, Q_{1-2} = 251.25 kW

Shkiper50 [21]3 years ago
4 0

Answer:

a) Power developed by the turbine = 132.89 kW

b) magnitude of the rate of heat transfer from the air to the ambient, in kw = 251.25 kW

Explanation:

b) The process is a constant pressure process (Isobaric process)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

Using the steady flow energy equation:

Q_{1-2}  = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2}  = 2.5 * 1.005 * (300 - 400)\\Q_{1-2}  = -251.25 kW

Therefore, the magnitude of the rate of heat transfer from the air to the ambient, in kw, Q_{1-2} = 251.25 kW

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To get the temperature at 80% efficiency, we will use the relation:

\eta_{t} = \frac{T_{2} - T_{3}  }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3}  }{300 - 230.9 }

T₃ = 244.72 K

Power developed by the turbine is given by the relation:

\dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

You might be interested in
Ammonia contained in a piston-cylinder assembly, initially saturated vapor at 0o F, undergoes an isothermal process during which
Rudik [331]

ANSWERS:

-P_{2(a)} =15.6lbf/in^2\\-P_{2(b)} =30.146lbf/in^2\\ T_{2(a)} =0^oF\\T_{2(b)} =0^oF\\x_{2(b)} =49.87percent

Explanation:

Given:

Piston cylinder assembly which mean that the process is constant pressure process P=C.

<u>AMMONIA </u>

state(1)

saturated vapor x_{1} =1

The temperature T_{1} =0^0 F

Isothermal process  T=C

a)

-V_{2} =2V_{1} ( double)

b)

-V_{2} =.5V_{2} (reduced by half)

To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.

state(1)

using PVT data for saturated ammonia

-P_{1} =30.416 lbf/in^2\\-v_{1} =v_{g} =9.11ft^3/lb

then the state exists in the supper heated region.

a) from standard data

-v_{1(a)} =2v_{1} =18.22ft^3/lb\\-T_{1} =0^oF

at\\P_{x} =14lbf/in^2\\-v_{x} =20.289 ft^3/kg

at\\P_{y} =16 lbf/in^2\\-v_{y} =17.701ft^3/kg

assume linear interpolation

\frac{P_{x}-P_{2(b)}  }{P_{x}- P_{y} } =\frac{v_{x}-v_{1(a)}  }{v_{x}-v_{y}  }

P_{1(b)}=P_{x} -(P_{x} -P_{y} )*\frac{v_{x}- v_{1(b)} }{v_{x}-v_{y}  }\\ \\P_{1(b)} =14-(14-16)*\frac{20.289-18.22}{20.289-17.701} =15.6lbf/in^2

b)

-v_{2(a)} =2v_{1} =4.555ft^3/lb\\v_{g}

from standard data

-v_{f} =0.02419ft^3/kg\\-v_{g} =9.11ft^3/kg\\v_{f}

then the state exist in the wet zone

-P_{s} =30.146lbf/in^2\\v_{2(a)} =v_{f} +x(v_{g} -v_{f} )

x=\frac{v_{2(a)-v_{f} } }{v_{g} -v_{f} } \\x=\frac{4.555-0.02419}{9.11-0.02419} =49.87%

3 0
3 years ago
When a person has the ability to move a vehicle, they have ____________________.
sergiy2304 [10]

(Energy ) i think .....

4 0
3 years ago
Check the level of motor oil in your engine by ?
Usimov [2.4K]

Answer:

cpct gvxjjxjhdfjokjdzfjiyddzzsjhxf

6 0
1 year ago
Dust, dirt, or metal chips can pose a potential ____ injury risk in a shop.
Liono4ka [1.6K]

Answer: Eye injury

Explanation: small material such as dust, dirt, and metal shards can harm your eyes with potential blindness or infection.

7 0
2 years ago
One method that is used to grow nanowires (nanotubes with solid cores) is to initially deposit a small droplet of a liquid catal
7nadin3 [17]

Answer: maximum length of the nanowire is 510 nm

Explanation:

 

From the table of 'Thermo physical properties of selected nonmetallic solids at At T = 1500 K

Thermal conductivity of silicon carbide k = 30 W/m.K

Diameter of silicon carbide nanowire, D = 15 x 10⁻⁹ m  

lets consider the equation for the value of m

m = ( (hP/kAc)^1/2 )  = ( (4h/kD)^1/2 )  

m =  ( ((4 × 10⁵)/(30×15×10⁻⁹ ))^1/2 ) = 942809.04    

now lets find the value of h/mk    

h/mk = 10⁵ / ( 942809.04 × 30) =  0.00353

lets consider the value θ/θb by using the equation

θ/θb = (T - T∞) / (T - T∞)

θ/θb =  (3000 - 8000) / (2400 - 8000)

= 0.893

the temperature distribution at steady-state is expressed as;

θ/θb = [ cosh m(L - x) + ( h/mk) sinh m (L - x)]   / [cosh mL+  (h/mk) sinh mL]

θ/θb = [ cosh m(L - L) + ( h/mk) sinh m (L - L)]   / [cosh mL+  (h/mk) sinh mL]

θ/θb = [ 1 ]  / [cosh mL+  (h/mk) sinh mL]

so we substitute

0.893 =  [ 1 ]  / [cosh (942809.04 × L) +  (0.00353) sinh (942809.04 × L)]

L = 510 × 10⁻⁹m

L = 510 nm

therefore maximum length of the nanowire is 510 nm

4 0
3 years ago
Other questions:
  • A number 12 copper wire has a diameter of 2.053 mm. Calculate the resistance of a 37.0 m long piece of such wire.
    13·1 answer
  • what is the expected life 1 inch diameter bar machined from AISI 1020 CD Steel is subjected to alternating bending stress betwee
    9·1 answer
  • Tony works as a Sorter in a processing factory. Which qualifications does he most likely have?
    10·2 answers
  • Complete the sentence to identify a useful advance in the culinary arts.
    8·1 answer
  • Please answer fast. With full step by step solution.​
    14·1 answer
  • Water from an upper tank is drained into a lower tank through a 5 cm diameter iron pipe with roughness 2 mm. The entrance to the
    11·1 answer
  • If the load parameters are: Vln=600kV, Il=100A (resistive), calculate the source voltage and current when the line is 50Miles (s
    14·1 answer
  • The term _______________refers to the science of using fluids to perform work.
    9·2 answers
  • Explain the proper uses of shop equipment. (explain to me how to use 3 pieces of shop equipment.)
    7·1 answer
  • How many different powerball combinations are there
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!