1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
14

Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange

r where it is cooled at constant pressure to 300 K through heat transfer with the ambient. It then expands adiabatically to 1.0 bar through a turbine and is discharged into the cabin. The turbine has an isentropic efficiency of 80%.
If the mass flow rate of the air is 2.5 kg/s, determine:

(a) the power developed by the turbine, in kw.
(b) the magnitude of the rate of heat transfer from the air to the ambient, in kw
Engineering
2 answers:
Naddika [18.5K]3 years ago
6 0

Answer:

a) 132.89 kW

b) 251.25 kW

Explanation:

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M} c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To evaluate the temperature at 80% efficiency, we will use the following method:

\eta_{t} = \frac{T_{2} - T_{3} }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3} }{300 - 230.9 }

T₃ = 244.72 K

The power developed by the turbine is given by the relation:

\dot{W} = \dot{M} c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

b)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

We going to the steady flow energy equation using this equation:

Q_{1-2} = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2} = 2.5 * 1.005 * (300 - 400)\\Q_{1-2} = -251.25 kW

Hence, the magnitude of the rate of heat transfer from the air to the ambient, in is going to be kw, Q_{1-2} = 251.25 kW

Shkiper50 [21]3 years ago
4 0

Answer:

a) Power developed by the turbine = 132.89 kW

b) magnitude of the rate of heat transfer from the air to the ambient, in kw = 251.25 kW

Explanation:

b) The process is a constant pressure process (Isobaric process)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

Using the steady flow energy equation:

Q_{1-2}  = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2}  = 2.5 * 1.005 * (300 - 400)\\Q_{1-2}  = -251.25 kW

Therefore, the magnitude of the rate of heat transfer from the air to the ambient, in kw, Q_{1-2} = 251.25 kW

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To get the temperature at 80% efficiency, we will use the relation:

\eta_{t} = \frac{T_{2} - T_{3}  }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3}  }{300 - 230.9 }

T₃ = 244.72 K

Power developed by the turbine is given by the relation:

\dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

You might be interested in
An uncovered swimming pool loses 1.0 inch of water off its 1,000 ft^2 surface each week due to evaporation. The heat of vaporiza
soldi70 [24.7K]

Answer:

The affirmation is true, the cover will be worth buying

Explanation:

The equation necessary to use is

E = m*cv,

Where

cv: the heat of vaporization.  

Finding the rate at which the water evaporates (m^3/week).  

The swimming pool loses water at 1 inch/week off its 1,000 ft^2

Than,

1000 ft² * 1 in/wk * 1 ft/12 in = 83.33 ft³/week

To obtains the rate of mass loss it is necessary to multiply it for the density of water

83.33 ft³/week * 62.4 lb/ft³ = 5200 lb/week

Knowing the vaporization heat it is possible to find the rate of heat which is leaving the swimming pool  

5200 lb/week * 1050 BTU/lb = 5460000 btu/week

Over a 15-week period, the pool loses 81.9 million BTU.  

Knowing the cost of energy to heat the pool is $10.00 per million btu

The price = $819

This way, the affirmation is true, the cover will be worth buying

3 0
3 years ago
Technician A says when you push the horn button, electromagnetism moves an iron bar inside the horn, which opens and closes cont
Yuliya22 [10]

Answer:

good question

Explanation:

4 0
3 years ago
Read 2 more answers
Please answer the following questions.
likoan [24]

Basically, the purposes of digital multimeter are to measure two or more electrical values such as:

principally voltage (volts)

current (Ampere)

resistance (Ohms)

8 0
3 years ago
Read 2 more answers
Please help ill mark as brainlest
krek1111 [17]
I would help if It wasn’t so confusing.
4 0
3 years ago
In this assignment, you will write a user interface for your calculator using JavaFX. Your graphical user interface (GUI) should
Zolol [24]

Answer:

Kindly note that, you're to replace "at" with shift 2 as the brainly text editor can't take the symbol

Explanation:

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.layout.VBox;

import javafx.scene.layout.HBox;

import javafx.scene.control.TextField;

import javafx.scene.control.Button;

public class Calculator extends Application {

public static void main(String[] args) {

// TODO Auto-generated method stub

launch(args);

}

"at"Override

public void start(Stage primaryStage) throws Exception {

// TODO Auto-generated method stub

Group root = new Group();

VBox mainBox = new VBox();

HBox inpBox = new HBox();

TextField txtInput = new TextField ();

txtInput.setEditable(false);

txtInput.setStyle("-fx-font: 20 mono-spaced;");

txtInput.setText("0.0");

txtInput.setMinHeight(20);

txtInput.setMinWidth(200);

inpBox.getChildren().add(txtInput);

Scene scene = new Scene(root, 200, 294);

mainBox.getChildren().add(inpBox);

HBox rowOne = new HBox();

Button btn7 = new Button("7");

btn7.setMinWidth(50);

btn7.setMinHeight(50);

Button btn8 = new Button("8");

btn8.setMinWidth(50);

btn8.setMinHeight(50);

Button btn9 = new Button("9");

btn9.setMinWidth(50);

btn9.setMinHeight(50);

Button btnDiv = new Button("/");

btnDiv.setMinWidth(50);

btnDiv.setMinHeight(50);

rowOne.getChildren().addAll(btn7,btn8,btn9,btnDiv);

mainBox.getChildren().add(rowOne);

HBox rowTwo = new HBox();

Button btn4 = new Button("4");

btn4.setMinWidth(50);

btn4.setMinHeight(50);

Button btn5 = new Button("5");

btn5.setMinWidth(50);

btn5.setMinHeight(50);

Button btn6 = new Button("6");

btn6.setMinWidth(50);

btn6.setMinHeight(50);

Button btnMul = new Button("*");

btnMul.setMinWidth(50);

btnMul.setMinHeight(50);

rowTwo.getChildren().addAll(btn4,btn5,btn6,btnMul);

mainBox.getChildren().add(rowTwo);

HBox rowThree = new HBox();

Button btn1 = new Button("1");

btn1.setMinWidth(50);

btn1.setMinHeight(50);

Button btn2 = new Button("2");

btn2.setMinWidth(50);

btn2.setMinHeight(50);

Button btn3 = new Button("3");

btn3.setMinWidth(50);

btn3.setMinHeight(50);

Button btnSub = new Button("-");

btnSub.setMinWidth(50);

btnSub.setMinHeight(50);

rowThree.getChildren().addAll(btn1,btn2,btn3,btnSub);

mainBox.getChildren().add(rowThree);

HBox rowFour = new HBox();

Button btnC = new Button("C");

btnC.setMinWidth(50);

btnC.setMinHeight(50);

Button btn0 = new Button("0");

btn0.setMinWidth(50);

btn0.setMinHeight(50);

Button btnDot = new Button(".");

btnDot.setMinWidth(50);

btnDot.setMinHeight(50);

Button btnAdd = new Button("+");

btnAdd.setMinWidth(50);

btnAdd.setMinHeight(50);

rowFour.getChildren().addAll(btnC,btn0,btnDot,btnAdd);

mainBox.getChildren().add(rowFour);

HBox rowFive = new HBox();

Button btnEq = new Button("=");

btnEq.setMinWidth(200);

btnEq.setMinHeight(50);

rowFive.getChildren().add(btnEq);

mainBox.getChildren().add(rowFive);

root.getChildren().add(mainBox);

primaryStage.setScene(scene);

primaryStage.setTitle("GUI Calculator");

primaryStage.show();

}

}

4 0
3 years ago
Other questions:
  • A water jet jump involves a jet cross-sectional area of 0.01 m2 , and a jet velocity of 30 m/s. The jet is surrounded by entrain
    6·1 answer
  • What is an ip<br> Number
    12·1 answer
  • For a rod of annealed AISI 1018 steel with a cross sectional area of 0.65 in^2?; what is the maximum tensile load Pmax that shou
    10·1 answer
  • A closed, rigid tank fitted with a paddle wheel contains 2.0 kg of air, initially at 200oC, 1 bar. During an interval of 10 minu
    8·1 answer
  • Question 3. Assign boston_under_10 and manila_under_10 to the percentage of rides that are less than 10 minutes in their respect
    14·1 answer
  • What is the friction factor for fully developed flow in a circular pipe where Reynolds number is 1000
    6·1 answer
  • What material are the rocker/valve cover gaskets made out of?
    5·1 answer
  • A countinous shot that sense, flows well, and is understanable and pleasant to look at
    13·1 answer
  • A 75-hp motor that has an efficiency of 91.0% is worn-out and is replaced by a motor that has a high efficiency 75-hp motor that
    6·1 answer
  • When bending metal, the material on the outside of the curve stretches while the material on the inside of the curve compresses.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!