1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
14

Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange

r where it is cooled at constant pressure to 300 K through heat transfer with the ambient. It then expands adiabatically to 1.0 bar through a turbine and is discharged into the cabin. The turbine has an isentropic efficiency of 80%.
If the mass flow rate of the air is 2.5 kg/s, determine:

(a) the power developed by the turbine, in kw.
(b) the magnitude of the rate of heat transfer from the air to the ambient, in kw
Engineering
2 answers:
Naddika [18.5K]3 years ago
6 0

Answer:

a) 132.89 kW

b) 251.25 kW

Explanation:

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M} c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To evaluate the temperature at 80% efficiency, we will use the following method:

\eta_{t} = \frac{T_{2} - T_{3} }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3} }{300 - 230.9 }

T₃ = 244.72 K

The power developed by the turbine is given by the relation:

\dot{W} = \dot{M} c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

b)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

We going to the steady flow energy equation using this equation:

Q_{1-2} = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2} = 2.5 * 1.005 * (300 - 400)\\Q_{1-2} = -251.25 kW

Hence, the magnitude of the rate of heat transfer from the air to the ambient, in is going to be kw, Q_{1-2} = 251.25 kW

Shkiper50 [21]3 years ago
4 0

Answer:

a) Power developed by the turbine = 132.89 kW

b) magnitude of the rate of heat transfer from the air to the ambient, in kw = 251.25 kW

Explanation:

b) The process is a constant pressure process (Isobaric process)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

Using the steady flow energy equation:

Q_{1-2}  = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2}  = 2.5 * 1.005 * (300 - 400)\\Q_{1-2}  = -251.25 kW

Therefore, the magnitude of the rate of heat transfer from the air to the ambient, in kw, Q_{1-2} = 251.25 kW

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To get the temperature at 80% efficiency, we will use the relation:

\eta_{t} = \frac{T_{2} - T_{3}  }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3}  }{300 - 230.9 }

T₃ = 244.72 K

Power developed by the turbine is given by the relation:

\dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

You might be interested in
1. True/False The Pressure Relief valve maintains the minimum pressure in the hydraulic circuit​
elena55 [62]
Yeah it’s true. Good luck!!
3 0
3 years ago
Metal wireways are sheet metal troughs with _____________ for housing and protecting electrical conductors and cable.
levacccp [35]

Answer:

Metal wireways are sheet metal "U"s with removable housing for protecting electrical equipment, wires, and cables.

Explanation:

These are especially used to run wire in manufacturing environments.

5 0
2 years ago
Differences between acidic and basic Bessemer process​
dybincka [34]

Answer:

In the acid processes, deoxidation can take place in the furnaces, leaving a reasonable time for the inclusions to rise into the sla*g and so be removed before casting. Whereas in the basic furnaces, deoxidation is rarely carried out in the presence of the sla*g, otherwise phosphorus would return to the metal.

5 0
2 years ago
Steam enters a steady-flow adiabatic nozzle with a low inlet velocity (assume ~0 m/s) as a saturated vapor at 6 MPa and expands
Sergio [31]
Yea bro I don’t really know
7 0
2 years ago
A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at 2308C by rejectin
lord [1]

Answer:

hello your question is incomplete attached below is the missing part and also attached is the solution

answer: a) 0.4801

              b) 5.398 kw

              c) 2.14

              d) 12.72

Explanation:

The quality of the refrigerant at the evaporator inlet

h4 = hf4 + x4(hfx4)

Refrigeration load

Ql = m(h1-h4)

COP of the refrigerator

Ql / m(h2-h1) - Qm

Theoretical maximum refrigeration load

( Ql )max = COPr.rev * [m(h2-h1) - Qin]

5 0
3 years ago
Other questions:
  • The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21…… starts with two 1s, and each term afterward is the sum of its two predecessors
    8·2 answers
  • Your new mobile phone business is now approaching its first anniversary and you are able to step back and finally take a deep br
    8·1 answer
  • A PMOS device with VT P = −1.2 V has a drain current iD = 0.5 mA when vSG = 3 V and vSD = 5 V. Calculate the drain current when:
    12·1 answer
  • In order to avoid slipping in the shop, your footwear should __
    10·2 answers
  • If superheated water vapor at 30 MPa iscooled at ​constant pressure​, it will eventually become saturated vapor, and with suffic
    5·1 answer
  • The following passage contains a fragment. Select the correct revision. Presley took the exuberance of gospel and added the freq
    7·1 answer
  • (25) Consider the mechanical system below. Obtain the steady-state outputs x_1 (t) and x_2 (t) when the input p(t) is the sinuso
    9·1 answer
  • Which of the following are made up of electrical probes and connectors?
    8·1 answer
  • 1. Using the formula above, complete this task.
    9·1 answer
  • A machine raises 20kg of water through a height of 50m in 10secs. What is the power of the machine.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!