1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
14

Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange

r where it is cooled at constant pressure to 300 K through heat transfer with the ambient. It then expands adiabatically to 1.0 bar through a turbine and is discharged into the cabin. The turbine has an isentropic efficiency of 80%.
If the mass flow rate of the air is 2.5 kg/s, determine:

(a) the power developed by the turbine, in kw.
(b) the magnitude of the rate of heat transfer from the air to the ambient, in kw
Engineering
2 answers:
Naddika [18.5K]3 years ago
6 0

Answer:

a) 132.89 kW

b) 251.25 kW

Explanation:

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M} c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To evaluate the temperature at 80% efficiency, we will use the following method:

\eta_{t} = \frac{T_{2} - T_{3} }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3} }{300 - 230.9 }

T₃ = 244.72 K

The power developed by the turbine is given by the relation:

\dot{W} = \dot{M} c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

b)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

We going to the steady flow energy equation using this equation:

Q_{1-2} = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2} = 2.5 * 1.005 * (300 - 400)\\Q_{1-2} = -251.25 kW

Hence, the magnitude of the rate of heat transfer from the air to the ambient, in is going to be kw, Q_{1-2} = 251.25 kW

Shkiper50 [21]3 years ago
4 0

Answer:

a) Power developed by the turbine = 132.89 kW

b) magnitude of the rate of heat transfer from the air to the ambient, in kw = 251.25 kW

Explanation:

b) The process is a constant pressure process (Isobaric process)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

Using the steady flow energy equation:

Q_{1-2}  = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2}  = 2.5 * 1.005 * (300 - 400)\\Q_{1-2}  = -251.25 kW

Therefore, the magnitude of the rate of heat transfer from the air to the ambient, in kw, Q_{1-2} = 251.25 kW

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To get the temperature at 80% efficiency, we will use the relation:

\eta_{t} = \frac{T_{2} - T_{3}  }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3}  }{300 - 230.9 }

T₃ = 244.72 K

Power developed by the turbine is given by the relation:

\dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

You might be interested in
How deep does electrical conduit need to be buried?
GenaCL600 [577]
In general, bury metal conduits at least 6 inches below the soil surface. You may also run them at a depth of 4 inches under a 4-inch concrete slab. Under your driveway, the conduits must be below a depth of 18 inches, and under a public road or alleyway, they must be buried below 24 inches.
7 0
2 years ago
The problem faced by Galloping Gertie, the failed bridge across the Tacoma Narrows, was caused because the engineers did not fol
Allushta [10]

Answer:

1) Perform

2) Prototype

Explanation:

The prototype testing phase of the design process to test the readiness of the design for the intended use

The prototype which is a first or early model of the project made so as to ensure proper functioning of the concept is to pass through general function test as well as design performance evaluation in a testing or lab setting

Other tests include, excessive stress test, testing to failure and other design tests.

Therefore;

The problem faced by Galloping Gertie the failed bridge across the Tacoma Narrows, was caused because the engineers did not perform tests on the prototype in the engineering design process.

7 0
3 years ago
An electric motor under steady load draws 9.7 amperes at 110 volts; it delivers 1.25(hp) of mechanical energy. The temperature o
pishuonlain [190]

Answer:

The total rate of entropy generation is 6.665 W/K

Explanation:

Power input = current × voltage = 9.7 × 110 = 1067 W

Power output = 1.25 hp = 1.25 × 746 = 932.5 W

Total power = 1067 + 932.5 = 1999.5 W

Total rate of entropy generation = total power ÷ temperature of the surrounding = 1999.5 W ÷ 300 K = 6.665 W/K

7 0
3 years ago
The y and z keys swapping position is messing with your touch typing. You decide to write out your email as if the keys were in
Zarrin [17]

Answer:

# the function fix_yz is defined

# it takes a string as parameter

def fix_yz(word):

   # new_word is to hold the new corrected string

   new_word = ""

   # loop through the string

   # and check for any instance of y or z.

   # if any instance is found, it is replaced accordingly

   for each_letter in word:

       if each_letter == 'z':

           new_word += 'y'

       elif each_letter == 'Z':

           new_word += 'Y'    

       elif each_letter == 'y':

           new_word += 'z'

       elif each_letter == 'Y':

           new_word += 'Z'        

       else:

           new_word += each_letter

   # the value of new string is returned

   return new_word        

Explanation:

The function is written in Python 3 and it is well commented. An image is attached showing the output of the given example.

The function take a string as input. It then loop through the string and check for any instance of 'y' or 'z'; if any instance is found it is swapped accordingly and then append to the new_word.

The value of bew_word is returned after the loop.

4 0
3 years ago
3.) Technician A says that a scan tool can be used to verify engine operating temperature,
erastova [34]
I think it is Both A and B
8 0
3 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • When you are configuring data deduplication, you must choose a usage type for the volume you are configuring. Which of the follo
    8·1 answer
  • Why are open systems harder to study than closed systems?​
    6·1 answer
  • What are the three elementary parts of a vibrating system?
    14·1 answer
  • Ventajas motor avion
    5·1 answer
  • A kernel-level thread wishes to acquire a mutex lock declared as global in the process. True or False: the function call used be
    6·1 answer
  • Water at atmospheric pressure boils on the surface of a large horizontal copper tube. The heat flux is 90% of the critical value
    11·1 answer
  • an oven takes 15A at 240V,it required to reduce current to 12V find resistance which must be connected in series​
    15·1 answer
  • If a weld is laying into a joint with a concave weld contour with undercutting issues, what might be the cause?
    14·1 answer
  • How do you get A's in school
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!