1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
garri49 [273]
3 years ago
14

Air at 2.5 bar, 400 K is extracted from a main jet engine compressor for cabin cooling. The extracted air enters a heat exchange

r where it is cooled at constant pressure to 300 K through heat transfer with the ambient. It then expands adiabatically to 1.0 bar through a turbine and is discharged into the cabin. The turbine has an isentropic efficiency of 80%.
If the mass flow rate of the air is 2.5 kg/s, determine:

(a) the power developed by the turbine, in kw.
(b) the magnitude of the rate of heat transfer from the air to the ambient, in kw
Engineering
2 answers:
Naddika [18.5K]3 years ago
6 0

Answer:

a) 132.89 kW

b) 251.25 kW

Explanation:

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M} c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To evaluate the temperature at 80% efficiency, we will use the following method:

\eta_{t} = \frac{T_{2} - T_{3} }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3} }{300 - 230.9 }

T₃ = 244.72 K

The power developed by the turbine is given by the relation:

\dot{W} = \dot{M} c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

b)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

We going to the steady flow energy equation using this equation:

Q_{1-2} = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2} = 2.5 * 1.005 * (300 - 400)\\Q_{1-2} = -251.25 kW

Hence, the magnitude of the rate of heat transfer from the air to the ambient, in is going to be kw, Q_{1-2} = 251.25 kW

Shkiper50 [21]3 years ago
4 0

Answer:

a) Power developed by the turbine = 132.89 kW

b) magnitude of the rate of heat transfer from the air to the ambient, in kw = 251.25 kW

Explanation:

b) The process is a constant pressure process (Isobaric process)

The constant pressure specific heat of air, c_{p} = 1.005 kJ/kg -K

Specific heat ratio for air, \gamma = 1.4

The mass flow rate of air, \dot{m} = 2.5 kg/s

P₁ = 2.5 bar, T₁ = 400 K

P₂ = 2.5 bar, T₂ = 300 K

Using the steady flow energy equation:

Q_{1-2}  = \dot{m} c_{p} (T_{2} - T_{1} \\Q_{1-2}  = 2.5 * 1.005 * (300 - 400)\\Q_{1-2}  = -251.25 kW

Therefore, the magnitude of the rate of heat transfer from the air to the ambient, in kw, Q_{1-2} = 251.25 kW

a) For the isentropic process:

Power developed by the turbine is given by the relation \dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})

Isentropic efficiency, \eta_{t} = 80%

P₂ = 2.5 bar, T₂ = 300 K

P₃ = 1 bar, T_{3s} = ? where T_{3s} is the isentropic temperature at 100% efficiency

The isentropic relation is given by:

\frac{T_{3s} }{T_{2} } = (\frac{P_{3} }{P_{2} }) ^{\frac{\gamma - 1}{\gamma} } \\\frac{T_{3s} }{300 } = (\frac{1 }{2.5 }) ^{\frac{1.4 - 1}{1.4 }

T_{3s} = 230.9 K

To get the temperature at 80% efficiency, we will use the relation:

\eta_{t} = \frac{T_{2} - T_{3}  }{T_{2} - T_{3s} } \\0.8= \frac{300 - T_{3}  }{300 - 230.9 }

T₃ = 244.72 K

Power developed by the turbine is given by the relation:

\dot{W} = \dot{M}  c_{p} (T_{2} - T_{3})\\ \dot{W} = 2.5 * 1.005* (300-244.72)\\ \dot{W} = 138.89 kW

You might be interested in
Select three functions of catalysts.
Korolek [52]

Answer: speed up food processing

speed up plant growth

Increase fuel efficiency

Explanation:

A catalyst simply refers to a substance that leads to an increase in the reaction rate when it's added to a substance. When the activation energy is reduced by catalysts, this.hwlpa on the speeding up of a reaction.

Therefore,the functions of catalysts include speed up food processing, speeding up plant growth and increase fuel efficiency

5 0
3 years ago
Consider two Carnot heat engines operating in series. The first engine receives heat from the reservoir at 1400 K and rejects th
Aleksandr-060686 [28]

Answer:

The temperature T= 648.07k

Explanation:

T1=input temperature of the first heat engine =1400k

T=output temperature of the first heat engine and input temperature of the second heat engine= unknown

T3=output temperature of the second heat engine=300k

but carnot efficiency of heat engine =1 - \frac{Tl}{Th} \\

where Th =temperature at which the heat enters the engine

Tl is the  temperature of the environment

since both engines have the same thermal capacities <em>n_{th} </em> therefore n_{th} =n_{th1} =n_{th2}\\n_{th }=1-\frac{T1}{T}=1-\frac{T}{T3}\\ \\= 1-\frac{1400}{T}=1-\frac{T}{300}\\

We have now that

\frac{-1400}{T}+\frac{T}{300}=0\\

multiplying through by T

-1400 + \frac{T^{2} }{300}=0\\

multiplying through by 300

-420000+ T^{2} =0\\T^2 =420000\\\sqrt{T2}=\sqrt{420000}  \\T=648.07k

The temperature T= 648.07k

5 0
3 years ago
If a lever operates at a mechanical disadvantage, it means that the ________.
alekssr [168]

Answer:

The correct answer is option 'B': Load is far from fulcrum and the effort is applied near the fulcrum

Explanation:

A lever works on the principle of balancing of torques. The torque about the fulcrum by the load should be equal to the torque by the applied effort. Since we know that the torque is proportional to both the force and the distance it is applied from the distance from the axis of rotation. A lever is used when we need to lift a heavy load by utilizing this effect of the lever arm.

A mechanical disadvantage occurs when we are not able to lift the weight easily due to the fact we apply effort near the fulcrum.

4 0
3 years ago
Read 2 more answers
g A steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. Determine the longitudinal and hoop stress
zvonat [6]

Answer:

a) \mathbf{\sigma _ 1 = 4800 psi}

     \mathbf{ \sigma _2 = 0}

b)\mathbf{\sigma _ 1 = 6000 psi}

  \mathbf{ \sigma _2 = 3000 psi}

Explanation:

Given that:

diameter d = 12 in

thickness t = 0.25 in

the radius = d/2 = 12 / 2 = 6 in

r/t = 6/0.25 = 24

24 > 10

Using the  thin wall cylinder formula;

The valve A is opened and the flowing water has a pressure P of 200 psi.

So;

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = 0

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{200(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 4800 psi}

b)The valve A is closed and the water pressure P is 250 psi.

where P = 250 psi

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = \frac{Pd}{4t}

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{250*(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 6000 psi}

\sigma _2 = \frac{Pd}{4t} \\ \\  \sigma _2 = \frac{250(12)}{4(0.25)}

\mathbf{ \sigma _2 = 3000 psi}

The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below

8 0
4 years ago
Match each context to the type of the law that is most suitable for it.
Bas_tet [7]

Answer:

sorry i dont understand the answer

Explanation:

but i think its a xd jk psml lol

5 0
3 years ago
Other questions:
  • A production plant has a requirement for a counter that will count 4,000 items before recycling and starting over. How many D fl
    15·1 answer
  • Which type of door consists of thin pieces of wood, glass, or louvers placed within a framed rectangular area?
    7·2 answers
  • What are some of the main causes of accidents?
    7·1 answer
  • Air in a 10 ft3 cylinder is initially at a pressure of 10 atm and a temperature of 330 K. The cylinder is to be emptied by openi
    10·2 answers
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks. A) Safety shoesB) Le
    7·1 answer
  • A 3-m wide rectangular channel has a flow velocity of 1.8 m/s when the depth of flow is 1.2 m. what will be the flow velocity wh
    14·1 answer
  • Tech A says that proper footwear may include both leather and steel-toed shoes. Tech B says that when working in the shop, you o
    15·1 answer
  • Omplete the following program: [0.5 X 4 = 2]
    11·1 answer
  • How does a belt operated supercharger work? (Not a turbo charger)
    12·1 answer
  • Which level of acceleration should you use when accelerating on a short highway entry ramp?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!