1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
geniusboy [140]
3 years ago
11

What is the maximal coefficient of performance of a refrigerator which cools down 10 kg of water (and then ice) to -6C. Upper he

at source of this refrigerator is surroundings at constant temperature 21C. Initially water is in equilibrium with surroundings. What is maximal coefficient of performance of heat pump operating in the same configuration. Specific heat of water, specific heat of ice, and latent heat of fusion are equal to 4.19KJ/kg/K, 2.1KJ/kg/K and 335 KJ/kg, respectively.
Engineering
1 answer:
inysia [295]3 years ago
6 0

Given:

Temperature of water, T_{1} = -6^{\circ}C =273 +(-6) =267 K

Temperature surrounding refrigerator, T_{2} = 21^{\circ}C =273 + 21 =294 K

Specific heat given for water, C_{w} = 4.19 KJ/kg/K

Specific heat given for ice, C_{ice} = 2.1 KJ/kg/K

Latent heat of fusion,  L_{fusion} = 335KJ/kg

Solution:

Coefficient of Performance (COP) for refrigerator is given by:

Max COP_{refrigerator} = \frac{T_{2}}{T_{2} - T_{1}}

= \frac{267}{294 - 267} = 9.89

Coefficient of Performance (COP) for heat pump is given by:

Max COP_{heat pump} = \frac{T_{1}}{T_{2} - T_{1}}\frac{294}{294 - 267} = 10.89

You might be interested in
Write a program to control the operation of the RED/GREEN/BLUE LED (LED2) as follows: 1. If no button is pressed, the LED should
aalyn [17]

Answer:

See explaination

Explanation:

int RED=10; int BLUE=11; int GREEN=12; int BUTTON1=8; int BUTTON2=9; void setup() { pinMode(RED, OUTPUT); pinMode(BLUE, OUTPUT); pinMode(GREEN, OUTPUT); pinMode(BUTTON1, INPUT); pinMode(BUTTON2, OUTPUT); } void loop() { int BTN1_STATE=digitalRead(BUTTON1); int BTN2_STATE=digitalRead(BUTTON2); if(BTN1_STATE==HIGH) { digitalWrite(BLUE, HIGH); delay(1000); // Wait for 1 second digitalWrite(BLUE, LOW); } if(BTN2_STATE==HIGH) { digitalWrite(RED, HIGH); delay(4000); // Wait for 4 seconds digitalWrite(RED, LOW); } if(BTN1_STATE==HIGH && BTN2_STATE==HIGH) { digitalWrite(GREEN, HIGH); delay(2000); // Wait for 2 second digitalWrite(GREEN, LOW); } }

4 0
3 years ago
In this assignment, you will write a user interface for your calculator using JavaFX. Your graphical user interface (GUI) should
Zolol [24]

Answer:

Kindly note that, you're to replace "at" with shift 2 as the brainly text editor can't take the symbol

Explanation:

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.layout.VBox;

import javafx.scene.layout.HBox;

import javafx.scene.control.TextField;

import javafx.scene.control.Button;

public class Calculator extends Application {

public static void main(String[] args) {

// TODO Auto-generated method stub

launch(args);

}

"at"Override

public void start(Stage primaryStage) throws Exception {

// TODO Auto-generated method stub

Group root = new Group();

VBox mainBox = new VBox();

HBox inpBox = new HBox();

TextField txtInput = new TextField ();

txtInput.setEditable(false);

txtInput.setStyle("-fx-font: 20 mono-spaced;");

txtInput.setText("0.0");

txtInput.setMinHeight(20);

txtInput.setMinWidth(200);

inpBox.getChildren().add(txtInput);

Scene scene = new Scene(root, 200, 294);

mainBox.getChildren().add(inpBox);

HBox rowOne = new HBox();

Button btn7 = new Button("7");

btn7.setMinWidth(50);

btn7.setMinHeight(50);

Button btn8 = new Button("8");

btn8.setMinWidth(50);

btn8.setMinHeight(50);

Button btn9 = new Button("9");

btn9.setMinWidth(50);

btn9.setMinHeight(50);

Button btnDiv = new Button("/");

btnDiv.setMinWidth(50);

btnDiv.setMinHeight(50);

rowOne.getChildren().addAll(btn7,btn8,btn9,btnDiv);

mainBox.getChildren().add(rowOne);

HBox rowTwo = new HBox();

Button btn4 = new Button("4");

btn4.setMinWidth(50);

btn4.setMinHeight(50);

Button btn5 = new Button("5");

btn5.setMinWidth(50);

btn5.setMinHeight(50);

Button btn6 = new Button("6");

btn6.setMinWidth(50);

btn6.setMinHeight(50);

Button btnMul = new Button("*");

btnMul.setMinWidth(50);

btnMul.setMinHeight(50);

rowTwo.getChildren().addAll(btn4,btn5,btn6,btnMul);

mainBox.getChildren().add(rowTwo);

HBox rowThree = new HBox();

Button btn1 = new Button("1");

btn1.setMinWidth(50);

btn1.setMinHeight(50);

Button btn2 = new Button("2");

btn2.setMinWidth(50);

btn2.setMinHeight(50);

Button btn3 = new Button("3");

btn3.setMinWidth(50);

btn3.setMinHeight(50);

Button btnSub = new Button("-");

btnSub.setMinWidth(50);

btnSub.setMinHeight(50);

rowThree.getChildren().addAll(btn1,btn2,btn3,btnSub);

mainBox.getChildren().add(rowThree);

HBox rowFour = new HBox();

Button btnC = new Button("C");

btnC.setMinWidth(50);

btnC.setMinHeight(50);

Button btn0 = new Button("0");

btn0.setMinWidth(50);

btn0.setMinHeight(50);

Button btnDot = new Button(".");

btnDot.setMinWidth(50);

btnDot.setMinHeight(50);

Button btnAdd = new Button("+");

btnAdd.setMinWidth(50);

btnAdd.setMinHeight(50);

rowFour.getChildren().addAll(btnC,btn0,btnDot,btnAdd);

mainBox.getChildren().add(rowFour);

HBox rowFive = new HBox();

Button btnEq = new Button("=");

btnEq.setMinWidth(200);

btnEq.setMinHeight(50);

rowFive.getChildren().add(btnEq);

mainBox.getChildren().add(rowFive);

root.getChildren().add(mainBox);

primaryStage.setScene(scene);

primaryStage.setTitle("GUI Calculator");

primaryStage.show();

}

}

4 0
3 years ago
The period of a pendulum T is assumed to depend only on the mass m, the length of the pendulum `, the acceleration due to gravit
zzz [600]

Answer:

The expression is shown in the explanation below:

Explanation:

Thinking process:

Let the time period of a simple pendulum be given by the expression:

T = \pi \sqrt{\frac{l}{g} }

Let the fundamental units be mass= M, time = t, length = L

Then the equation will be in the form

T = M^{a}l^{b}g^{c}

T = KM^{a}l^{b}g^{c}

where k is the constant of proportionality.

Now putting the dimensional formula:

T = KM^{a}L^{b}  [LT^{-} ^{2}]^{c}

M^{0}L^{0}T^{1} = KM^{a}L^{b+c}

Equating the powers gives:

a = 0

b + c = 0

2c = 1, c = -1/2

b = 1/2

so;

a = 0 , b = 1/2 , c = -1/2

Therefore:

T = KM^{0}l^{\frac{1}{2} } g^{\frac{1}{2} }

T = 2\pi \sqrt{\frac{l}{g} }

where k = 2\pi

8 0
3 years ago
Air enters the compressor of an air-standard Brayton cycle with a volumetric flow rate of 60 m3/s at 0.8 bar, 280 K. The compres
natima [27]

Answer:

a) The Net power developed in this air-standard Brayton cycle is 43.8MW

b) The rate of heat addition in the combustor is 84.2MW

c) The thermal efficiency of the cycle is 52%

Explanation:

To solve this cycle we need to determinate the enthalpy of each work point of it. If we consider the cycle starts in 1, the air is compressed until 2, is heated until 3 and go throw the turbine until 4.

Considering this:

h_{i} =T_{i}C_{pair}=T_{i}1.005\frac{KJ}{Kg K}

\mu_{comp}=\frac{h_{2S}-h_{1}}{h_{2}-h_{1}}

\mu_{comp}=\frac{h_{3}-h_{4}}{h_{3}-h_{4S}}

G_{m} =\frac{PMG_{v}}{TR} =59.73\frac{Kg}{s}

Now we can calculate the enthalpy of each work point:

h₁=281.4KJ/Kg

h₂=695.41KJ/Kg

h₃=2105KJ/Kg

h₄=957.14KJ/Kg

The net power developed:

P_{net}=P_{Tur}-P_{Comp}=G_{m}((h_{3}-h_{4})-(h_{2}-h_{1}))

The rate of heat:

Q=G_{m}(h_{3}-h_{2})

The thermal efficiency:

\mu_{ther}=\frac{P_{net}}{Q}

3 0
3 years ago
A missile flying at high speed has a stagnation pressure and temperature of 5 atm and 598.59 °R respectively. What is the densit
alexdok [17]

Answer:

5.31\frac{kg}{m^3}

Explanation:

Approximately, we can use the ideal gas law, below we see how we can deduce the density from general gas equation. To do this, remember that the number of moles n is equal to \frac{m}{M}, where m is the mass and M the molar mass of the gas, and the density is \frac{m}{V}.

For air M=28.66*10^{-3}\frac{kg}{mol} and \frac{5}{9}R=K

So, 598.59 R*\frac{5}{9}=332.55K

pV=nRT\\pV=\frac{m}{M}RT\\\frac{m}{V}=\frac{pM}{RT}\\\rho=\frac{pM}{RT}\\\rho=\frac{(5atm)28.66*10^{-3}\frac{kg}{mol}}{(8.20*10^{-5}\frac{m^3*atm}{K*mol})332.55K}=5.31\frac{kg}{m^3}

7 0
3 years ago
Other questions:
  • Name two types of battery chargers that are used in mechanics
    14·1 answer
  • what should be used to feed material into a machine? A.joy stick B.push stick C. your feet D. your hands​
    14·1 answer
  • Estimate the daily carbon utilization to remove chlorobenzene from 1.0 MGD of ground water saturated with chlorobenzene. Assume
    12·1 answer
  • What the Best describes the purpose of the occupational safety and health administración OSHA
    12·1 answer
  • Summarize three attributes that are important for an engineer to possess.
    13·1 answer
  • At the instant shown car A is travelling with a velocity of 24 m/s and which is decreasing at 4 m/s2 along the highway. At the s
    14·1 answer
  • Which option identifies the step skipped in the following scenario?
    9·2 answers
  • Which type of engineer is needed in the following scenario?
    8·2 answers
  • Which of the following describes a tropical grassland environment?
    6·2 answers
  • During welding in the vertical position, the torch angle can be varied to control sagging.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!