1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fgiga [73]
3 years ago
12

A computer has a two-level cache. Suppose that 60% of the memory references hit on the first level cache, 35% hit on the second

level, and 5% miss. The access times are 5 nsec, 15 nsec, and 60 nsec, respectively, where the times for the level 2 cache and memory start counting at the moment it is known that they are needed (e.g., a level 2 cache access does not even start until the level 1 cache miss occurs). What is the average access time?
Engineering
1 answer:
Andreyy893 years ago
4 0

Answer:

t=14ns

Explanation:

We make the relation between the specific access time and the memory percentage in each level, so

60\% \Rightarrow 60/100 = 0.60\\35\% \Rightarrow 35/100 = 0.35\\05\% \Rightarrow 05/100 = 0.05

t= 0.6(5) + 0.35(5+15) + 0.05(5+15+60)\\t= 0.6(5) + 0.35(20) + 0.05(80)\\t= 3 + 7 + 4\\t= 14 ns

Average Access Time is 14 nsec.

You might be interested in
Turn the motor around in the circuit. What happens?
kenny6666 [7]

Answer:

It will create a massive drag and pretty much stop the motor.

Explanation:

7 0
3 years ago
Two Carnot engines operate in series such that the heat rejected from one is the heat input to the other. The heat transfer from
kykrilka [37]

Answer:

Given:

high temperature reservoir T_{H} =1000k

low temperature reservoir T_{L} =400k

thermal efficiency n_{1}= n_{2}

The engines are said to  operate on Carnot cycle which is totally reversible.

To find the intermediate temperature between the two engines, The thermal efficiency of the first heat engine can be defined as

n_{1} =1-\frac{T}{T_{H} }

The thermal efficiency of second heat engine can be written as

n_{2} =1-\frac{T_{L} }{T}

The temperature of intermediate reservoir can be defined as  

1-\frac{T}{T_{H} } =1-\frac{T_{L} }{T} \\T^2=T_{L} T_{H} \\T=\sqrt{T_{L} T_{H} }\\T=\sqrt{400*1000} =632k

8 0
3 years ago
Implement the following Matlab code:
vagabundo [1.1K]
28384 *x soít cos estematema
3 0
3 years ago
In a food processing facility, a spherical container of inner radius r1 = 40 cm, outer radius r2 = 41 cm, and thermal conductivi
Rashid [163]

Answer:

attached below

Explanation:

5 0
3 years ago
A second inventor was driving down the highway in her Prius one day with her hand out the window. She happened to be driving thr
Eva8 [605]

Answer:

Explanation:

It wouldn't work because the wind energy she would be collecting would actually come from the car engine.

The relative wind velocity observed from a moving vehicle is the sum of the actual wind velocity and the velovity of the vehicle.

u' = u + v

While running a car will generate a rather high wind velocity, and increase the power generated by a wind turbine, the turbine would only be able to convert part of the wind energy into electricity while adding a lot of drag. In the end, it would generate less energy that what the drag casuses the car to waste to move the turbine.

Regenerative braking uses an electric generator connected to the wheel axle to recover part of the kinetic energy eliminated when one brakes the vehicle. Normal brakes dissipate this energy as heat, a regenerative brake uses it to recharge a batttery. Note that is is a fraction of the energy that is recovered, not all of it.

A "regenerative accelerator" makes no sense. Braking is taking kinetic energy out of the vehicle, while accelerating is adding kinetic energy to it. Cars accelerate using the power from their engines.

6 0
3 years ago
Other questions:
  • An air-standard Otto cycle has a compression ratio of 6 and the temperature and pressure at the beginning of the compression pro
    13·1 answer
  • How do i get my camera to work in the app, i just got a new phone and it won’t pull up the camera
    14·1 answer
  • Liquid water enters an adiabatic piping system at 15°C at a rate of 8kg/s. If the water temperature rises by 0.2°C during flow d
    12·1 answer
  • Ignore swell and shrinkage for this problem.
    5·1 answer
  • Can someone Please help me..? If I'm your Onii-San then answer. And get brainliest. Make sure to explain why..
    15·1 answer
  • Sam constructs a circuit, connects a lead acid battery of 2 V to a lamp of resistance 3 Ω and places an ammeter across it. What
    8·2 answers
  • List and explain the major features that the following building designs must have to relate directly to their functions.
    11·1 answer
  • Thermodynamics fill in the blanks The swimming pool at the local YMCA holds roughly 749511.5 L (749511.5 kg) of water and is kep
    6·1 answer
  • Entor" by
    9·1 answer
  • Construct a link mechanism of crank oa 30mm rotating clockwise rod ab 100mm and bc 50mm
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!