Answer:
0.024 m = 24.07 mm
Explanation:
1) Notation
= tensile stress = 200 Mpa
= plane strain fracture toughness= 55 Mpa
= length of a surface crack (Variable of interest)
2) Definition and Formulas
The Tensile strength is the ability of a material to withstand a pulling force. It is customarily measured in units (F/A), like the pressure. Is an important concept in engineering, especially in the fields of materials and structural engineering.
By definition we have the following formula for the tensile stress:
(1)
We are interested on the minimum length of a surface that will lead to a fracture, so we need to solve for 
Multiplying both sides of equation (1) by 
(2)
Sequaring both sides of equation (2):
(3)
Dividing both sides by
we got:
(4)
Replacing the values into equation (4) we got:
![\lambda=\frac{1}{\pi}[\frac{55 Mpa\sqrt{m}}{1.0(200Mpa)}]^2 =0.02407m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B1%7D%7B%5Cpi%7D%5B%5Cfrac%7B55%20Mpa%5Csqrt%7Bm%7D%7D%7B1.0%28200Mpa%29%7D%5D%5E2%20%3D0.02407m)
3) Final solution
So the minimum length of a surface crack that will lead to fracture, would be 24.07 mm or more.
Answer:
capacity = 0.555 mAh
capacity = 3600 mAh
Explanation:
given data
battery = 1800 mAh
OCV = 3.9 V
solution
we get here capacity when it is in series
so here Q = 2C
capacity = 2 × ampere × second ...............1
put here value and we get
and 1 Ah = 3600 C
capacity =
capacity = 0.555 mAh
and
when it is in parallel than capacity will be
capacity = Q1 +Q2 ...............2
capacity = 1800 + 1800
capacity = 3600 mAh
Answer:
¿Qué aplicación estás usando? podría ser porque te equivocaste un paso
9514 1404 393
Answer:
see attached
Explanation:
Assuming flow is uniform across the cross section of the artery, the mass flow rate is the product of the volumetric flow rate and the density.
(5 cm³/s)(1.06 g/cm³) = 5.3 g/s
If we assume the blood splits evenly at the bifurcation, then the downstream mass flow rate in each artery is half that:
(5.3 g/s)/2 = 2.65 g/s
__
The average velocity will be the ratio of volumetric flow rate to area. Upstream, that is ...
(5 cm³/s)/(π(0.25 cm)²) ≈ 25.5 cm/s
Downstream, we have half the volumetric flow and a smaller area.
(2.5 cm³/s)/(π(0.15 cm)²) ≈ 35.4 cm/s