Answer:
thank you for the free point have a great rest of your day
Answer:
Check the explanation
Explanation:
to know the lift per unit span (N/m) that is expected to be measured when the wing attack angle is 4°
as well as the corresponding section lift coefficient and die moment coefficient .
Kindly check the attached image below to see the step by step explanation to the above question.
Answer:
i believe the answer is a but i could be wrong
Explanation:
i hope it helps
Answer:
5.6 mm
Explanation:
Given that:
A cylindrical tank is required to contain a:
Gage Pressure P = 560 kPa
Allowable normal stress
= 150 MPa = 150000 Kpa.
The inner diameter of the tank = 3 m
In a closed cylinder there exist both the circumferential stress and the longitudinal stress.
Circumferential stress 
Making thickness t the subject; we have


t = 0.0056 m
t = 5.6 mm
For longitudinal stress.



t = 0.0028 mm
t = 2.8 mm
From the above circumferential stress and longitudinal stress; the stress with the higher value will be considered ; which is circumferential stress and it's minimum value with the maximum thickness = 5.6 mm
Answer:
Velocity of ball B after impact is
and ball A is 
Explanation:
= Initial velocity of ball A

= Initial velocity of ball B = 0
= Final velocity of ball A
= Final velocity of ball B
= Coefficient of restitution = 0.8
From the conservation of momentum along the normal we have

Coefficient of restitution is given by



Adding the above two equations we get



From the conservation of momentum along the plane of contact we have


Velocity of ball B after impact is
and ball A is
.