The ions of Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
The periodic table is a systematic arrangement of elements in order of their atomic numbers into a set of 8 columns each called groups and a set of 7 rows each called a period.
Elements are arranged in different groups according to the number of Valence electrons they have.
- For instance, elements in the group I of the periodic table are highly electropositive and as such are highly reactive.
The same is evident in group 7 elements are highly electronegative and have high electron affinity and as such are unstable and reactive.
- However, Noble gases, <em>group VIII</em> elements have a full octet configuration on their outermost shell and as such are highly stable.
Consequently, the <em>Noble gases ion</em> has a stable Valence electron configuration.
Read more:
brainly.com/question/5336231
Answer:
3.74 M
Explanation:
We know that molarity is moles divided by liters. The first thing to do here is convert your 1500 mL of solution to L. There's 1,000 mL in 1 L, so you need to divide 1500 by 1000:
1500 ÷ 1000 = 1.50
Now you can plug your values into the equation for molarity:
5.60 mol ÷ 1.50 L = 3.74 M
Answer:
<em>When molecular hydrogen (H2) and oxygen (O2) are combined and allowed to react together, energy is released and the molecules of hydrogen and oxygen can combine to form either water or hydrogen peroxide.</em>
Answer:
M HCl sln = 12.0785 M
Explanation:
- molarity (M) [=] mol/L
- %mm = ((mass compound)/(mass sln))*100
∴ mass sln = 100.0 g
∴ δ sln = 1.19 g/mL
∴ % m/m = 37 %
⇒ 37 % =((mass HCl/mass sln))*100
⇒ 0.37 = mass HCl / 100.0 g
⇒ 37 g = mass HCl
∴ molar mass HCl = 36.46 g/mol
⇒ mol HCl = (37 g)*(mol/36.46 g) = 1.015 mol
⇒ volume sln = (100 g sln)*(mL/1.19 g) = 84.034 mL = 0.084034 L
⇒ M HClsln = 1.015 mol/0.084034 L
⇒ M HCl sln = 12.0785 M