When it comes to ecosystems, a mountain, a river, and a cloud have more in common than you might think. Abiotic factors have specific and important roles in nature because they help shape and define ecosystems.
Biotic and Abiotic Factors
An ecosystem is defined as any community of living and non-living things that work together. Ecosystems do not have clear boundaries, and it may be difficult to see where one ecosystem ends and another begins. In order to understand what makes each ecosystem unique, we need to look at the biotic and abiotic factors within them. Biotic factors are all of the living organisms within an ecosystem. These may be plants, animals, fungi, and any other living things. Abiotic factors are all of the non-living things in an ecosystem.
Both biotic and abiotic factors are related to each other in an ecosystem, and if one factor is changed or removed, it can affect the entire ecosystem. Abiotic factors are especially important because they directly affect how organisms survive.
Examples of Abiotic Factors
Abiotic factors come in all types and can vary among different ecosystems. For example, abiotic factors found in aquatic systems may be things like water depth, pH, sunlight, turbidity (amount of water cloudiness), salinity (salt concentration), available nutrients (nitrogen, phosphorous, etc.), and dissolved oxygen (amount of oxygen dissolved in the water). Abiotic variables found in terrestrial ecosystems can include things like rain, wind, temperature, altitude, soil, pollution, nutrients, pH, types of soil, and sunlight.
The boundaries of an individual abiotic factor can be just as unclear as the boundaries of an ecosystem. Climate is an abiotic factor - think about how many individual abiotic factors make up something as large as a climate. Natural disasters, such as earthquakes, volcanoes, and forest fires, are also abiotic factors. These types of abiotic factors certainly have drastic effects on the ecosystems they encounter.
A special type of abiotic factor is called a limiting factor. Limiting factors keep populations within an ecosystem at a certain level. They may also limit the types of organisms that inhabit that ecosystem. Food, shelter, water, and sunlight are just a few examples of limiting abiotic factors that limit the size of populations. In a desert environment, these resources are even scarcer, and only organisms that can tolerate such tough conditions survive there. In this way, the limiting factors are also limiting which organisms inhabit this ecosystem.
Answer:
- Acetic acid (CH₃COOH) and hydronium ion (H₃O⁺)
Explanation:
Hello,
In this case, based on the acid-base theory which states that acids are known as H⁺ donors, if we consider the direct reaction:

It is clear that the acetic acid is the first H⁺ donor as it losses one H⁺ to turn into the acetate ion. Moreover, if we consider the inverse reaction:

It is also clear that the hydronium ion is the second H⁺ donor as it losses one H⁺ to turn into water.
Best regards.
Number of Protons in an Uncharged Atom
The two main components of an atom are the nucleus and the cloud of electrons. The nucleus contains positively charged and neutral subatomic particles, whereas the cloud of electrons contains tiny negatively charged particles.
So half life is the time taken for a sample to decay to half its original mass, its a constant and applies to any original mass, it could be 5g or 1kg, it will take the same amount of time for the original mass to half. In this case the half life is 3 days.
After 3 days the sample will be at half its original mass, now 50g.
Now we can treat the 50g as if its a new sample. After another 3 days (6 days in total) there will be half of 50g left, = 25g.