Keplers laws states that planets sweep areas in equal times is second
S ?
U 0m/s
V ?
A 0.1m/s^2
T 2min (120 sec)
S=ut+0.5at^2
S=0(120 sec)+0.5(0.1m/s^2)(120 sec)^2
S=720m
Distance double 720m*2=1440m
V^2=u^2+2as
V^2=(0)^2+2(0.1 m/s^2)(1440m)
V^2=288
V= square root of 288=12 root 2=16.97 to 2 decimal places
I believe the answer is a
Answer:
Explanation:
given,
diameter of merry - go - round = 2.40 m
moment of inertia = I = 356 kg∙m²
speed of the merry- go-round = 1.80 rad/s
mass of child = 25 kg
initial angular momentum of the system
final angular momentum of the system
from conservation of angular momentum
The three phases of matter differ in properties just because of the proximity of their molecules. The solid phase is the most organized of all. Its atoms are compactly arranged together and has the strongest intermolecular forces to keep them together. This is why they have a definite shape and volume. The liquid phase have molecules that are far away from each other, but not as far as that of the gas phase. The liquid and gas phases can be lumped into one group called fluids because they have the same property - they take the shape and volume of their container.
To make an analogy, see the attached picture for your reference.