That is because there are other forces like the friction forces that apply differently on both of them. The frictional forces applied to the sled are smaller than they are on the father, for example, so it's possible for him to pull it.
Answer: Blood primarily moves in the veins by the rhythmic movement of smooth muscle in the vessel wall and by the action of the skeletal muscle as the body moves. Because most veins must move blood against the pull of gravity, blood is prevented from flowing backward in the veins by one-way valves.
Good luck !
Answer:
Time - taken = 2.5 s
deceleration= -8 m/s²
Solution:
Given:
speed, v = 8 m/s
distance, d = 20m
To Find:
deacceleration = ?
As we know speed is defined as
v = d/t
plugging in the values
t = 20/ 8
t = 2.5s
Now from deceleration formula
a = - v/ t
a = - 20/ 2.5
a = - 8 m/s²
Thus, the time taken and acceleration is 2.5 s and -8 m/s²
respectively.
Learn more about deceleration here:
brainly.com/question/13354629
#SPJ4
Answer:
6318 N
Explanation:
From the question given above, the following data were obtained:
Acceleration due to gravity of the moon (gₘ) = 1.62 m/s²
Mass (m) of container = 650 kg
Weight (W) of container on the earth =.?
Next, we shall determine the acceleration due to gravity of the earth. This can be obtained as follow:
Acceleration due to gravity of the moon (gₘ) = 1.62 m/s²
Acceleration due to gravity of the earth (gₑ) =.?
gₘ = 1/6 × gₑ
1.62 = 1/6 × gₑ
1.62 = gₑ /6
Cross multiply
gₑ = 1.62 × 6
gₑ = 9.72 m/s²
Finally, we shall determine the weight of the container on the earth as follow:
Mass (m) of container = 650 kg
Acceleration due to gravity of the earth (gₑ) = 9.72 m/s²
Weight (W) of container on the earth =.?
W = m × gₑ
W = 650 × 9.72
W = 6318 N
Therefore, the weight of the container on earth is 6318 N
Answer: c
Explanation: hope this helps :)