Answer:
404K
Explanation:
Data given, Kinetic Energy.K.E=8.37*10^-21J
Note: as the temperature of a is increase, the rate of random movement will increase, hence leading to more collision per unit time. Hence we can say that the relationship between the kinetic energy and the temperature is a direct variation.
This relationship can be expressed as

where K is a constant of value 1.38*10^-23
Hence if we substitute the values, we arrive at

converting to degree we have 
A compound
Explanation:
A compound machine is the combination of two or more simple machines.
An example is bicycle.
- A simple machine is a device that is used to increase the magnitude of force.
- It is a basic mechanical unit.
- Examples are inclined planes, lever systems, wheel and axle.
- A compound machine is a combination of these simple machines.
learn more:
lever brainly.com/question/5352966
#learnwithBrainly
<span>22.5 newtons.
First, let's determine how much energy the stone had at the moment of impact. Kinetic energy is expressed as:
E = 0.5mv^2
where
E = Energy
m = mass
v = velocity
Substituting known values and solving gives:
E = 0.5 3.06 kg (7 m/s)^2
E = 1.53 kg 49 m^2/s^2
E = 74.97 kg*m^2/s^2
Now ignoring air resistance, how much energy should the rock have had?
We have a 3.06 kg moving over a distance of 10.0 m under a force of 9.8 m/s^2. So
3.06 kg * 10.0 m * 9.8 m/s^2 = 299.88 kg*m^2/s^2
So without air friction, we would have had 299.88 Joules of energy, but due to air friction we only have 74.97 Joules. The loss of energy is
299.88 J - 74.97 J = 224.91 J
So we can claim that 224.91 Joules of work was performed over a distance of 10 meters. So let's do the division.
224.91 J / 10 m
= 224.91 kg*m^2/s^2 / 10 m
= 22.491 kg*m/s^2
= 22.491 N
Rounding to 3 significant figures gives an average force of 22.5 newtons.</span>
Answer:
the answer choices are at the bottom right?
Explanation:
Answer:
ΔK.E = 2.5 × 10⁻³ J
Explanation:
Given data in the question, we have:
Charge of the particle, q = 5.0 μC = 5 × 10 ⁻⁶ C
Initial speed of the particle, v = 55 m/s
The potential difference, ΔV = 500 V
Now, the gain in kinetic energy is given as
ΔK.E = q × ΔV
on substituting the values in the above formula, we get
ΔK.E = 5 × 10 ⁻⁶ C × 500 V
or
ΔK.E = 2.5 × 10⁻³ J