60.3° from due south and 5.89 m/s For this problem, first calculate a translation that will put John's destination directly on the origin and apply that translation to Mary's destination. Then the vector from the origin to Mary's new destination will be the relative vector of Mary as compared to John. So John is traveling due south at 6.7 m/s. After 1 second, he will be at coordinates (0,-6.7). The translation will be (0,6.7) Mary is traveling 28° West of due south. So her location after 1 second will be (-sin(28)*10.9, -cos(28)*10.9) = (-5.117240034, -9.624128762) After translating that coordinate up by 6.7, you get (-5.117240034, -2.924128762) The tangent of the angle will be 2.924128762/5.117240034 = 0.57142693 The arc tangent is atan(0.57142693) = 29.74481039° Subtract that value from 90 since you want the complement of the angle which is now 60.25518961° So Mary is traveling 60.3° relative to due south as seen from John's point of view. The magnitude of her relative speed is sqrt(-5.117240034^2 + -2.924128762^2) = 5.893783 m/s Rounding the results to 3 significant digits results in 60.3° and 5.89 m/s
Answer:
Explanation:
a ) The angle required = angle of repose = θ
Tanθ = .81
θ = 39⁰
b ) when angle of incline θ = 44
Net force on the block = mg sinθ - μ mg cosθ where μ is coefficient of kinetic friction
acceleration = gsinθ - μ g cosθ
= 9.8 ( sin44 - μ cos44 )
= 9.8 ( .695 - .69 x .72 )
= 9.8 ( .695 - .497 )
= 1.94 m /s²
Acceleration = ms^(-1)
= 60/4
=15 ms with the power of -1
Answer:
60 N
Explanation:
We can answer the question by using Newton's third law, which states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In this situation, we can identify the rope as object A, and the block as object B.
We are told that the rope exerts a force of 60 N on the block: if we apply Newton's third law, therefore, we can say that the block will also exert an equal (60 N) and opposite (in direction) force on the rope.
Answer:
1) W = 150 J
Explanation:
Work (W) is defined as the product of force F by the distance (d)the body travels due to this force.
W= F*d Formula ( 1)
The work is positive (W+) if the force has the same direction of movement of the object.
The work is negative (W-) if the force has the opposite direction of the movement of the object.
The component of the force that performs work must be parallel to the displacement.
Work done to lift the floor box to its final position
We apply the formula (1)
W= F*d
W = (100 N)*(1.5 m)
W = 150 J