1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
10

If the jet is moving at a speed of 1140 km/h at the lowest point of the loop, determine the minimum radius of the circle so that

the centripetal acceleration at the lowest point does not exceed 7.0 g's?Calculate the 69-kg pilot's effective weight (the force with which the seat pushes up on him) at the bottom of the circle, and at the top of the circle (assume the same speed)?
Physics
1 answer:
AnnZ [28]3 years ago
4 0

To solve this problem we will apply the concepts related to the centripetal Force and the Force given by weight and formulated in Newton's second law. Through the two expressions we can find the radius of curve made in the hand. To calculate the normal force, we will include the concepts of sum of forces to obtain the net force on the body at the top and bottom of the maneuver. The expression for centripetal force acting on the jet is

F_c = \frac{mv^2}{r}

According to Newton's second law, the net force acting on the jet is

F = ma

Here,

m = mass

a = acceleration

v = Velocity

r = Radius

PART A ) Equating the above two expression the equation for radius is

\frac{mv^2}{r} = ma

r = \frac{v^2}{a}

Replacing with our values we have that

r = \frac{(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{7(9.8m/s^2)}

r = 1.462*10^3m

PART B )

<u>- The expression for effective weight of the pilot at the bottom of the circle is</u>

N = mg +\frac{mv^2}{r}

N = (69kg)(9.8m/s^2)+\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}

N = 5408.87N

<em>Note that the normal reaction N is directed upwards and gravitational force mg is directed downwards. At the bottom of the circle, the centripetal force is directed upwards. So the centripetal force is obtained from the gravitational force and the normal reaction. </em>

<u>- The expression for effective weight of the pilot at the top of the circle is</u>

N = mg -\frac{mv^2}{r}

N = (69kg)(9.8m/s^2)-\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}

N = 4056.47N

<em>Note that at the top of the circle the centripetal force is directed downwards. So the centripetal force is obtained from normal reaction and the gravitational force. </em>

You might be interested in
How do i figure out this question?
nikklg [1K]

Answer:

0.75 g/cm^3

Explanation:

The formula for density:

\rho = \frac{m}{V}

Where m is the mass and V is the volume.

So, we can substitute values for m and V:

\rho = \frac{277}{370}\approx0.75

Therefore, the density is 0.75 g/cm^3 (watch the units!)

8 0
2 years ago
Read 2 more answers
In the 2008 Olympics, Jamaican sprinter Usain Bolt shocked the world as he ran the 100-meter dash in 9.69 seconds. Determine Usa
-Dominant- [34]

Answer:

His average speed was 10.3199 m/s.

Explanation:

4 0
3 years ago
A bomb of mass 6kg initially at rest explodes into two fragments of masses 4kg and2kg respectively. If the greater mass moves wi
Katen [24]

Answer:

v = 10 [m/s]

Explanation:

The largest mass is that of 4 [kg], in this way the momentum can be calculated by means of the product of the mass by velocity.

P=m*v\\

where:

P = momentum [kg*m/s]

m = mass = 4 [kg]

v = velocity = 5 [m/s]

Now the momentum:

P=4*5\\P=20[kg*m/s]

This same momentum is equal for the other mass, in this way we can find the velocity.

P=m*v\\20=2*v\\v=10[m/s]

7 0
3 years ago
In the high jump, the kinetic energy of an athlete is transformed into gravitational potential energy without the aid of a pole.
Fiesta28 [93]

Answer:

6.0 m/s

Explanation:

According to the law of conservation of energy, the total mechanical energy (potential, PE, + kinetic, KE) of the athlete must be conserved.

Therefore, we can write:

KE_i+PE_i =KE_f+PE_f

or

\frac{1}{2}mu^2+0=\frac{1}{2}mv^2+mgh

where:

m is the mass of the athlete

u is the initial speed of the athlete (at the bottom)

0 is the initial potential energy of the athlete (at the bottom)

v = 0.80 m/s is the final speed of the athlete (at the top)

g=9.8 m/s^2 is the acceleration due to gravity

h = 1.80 m is the final height of the athlete (at the top)

Solving the equation for u, we find the initial speed at which the athlete must jump:

u=\sqrt{v^2+2gh}=\sqrt{0.80^2+2(9.8)(1.80)}=6.0 m/s

4 0
3 years ago
An incident ray that passes through the vertex of a convex lens:
WINSTONCH [101]
The answer is refracts parallel to the axis of the lens
7 0
2 years ago
Other questions:
  • The earth pulls on the apple, and the apple pulls on the earth. This idea is represented by Newton's ___ Law of Motion.
    10·1 answer
  • Two or more explanatory variables that are not separated best describes which of the choices below?
    12·1 answer
  • What does it mean when there is a curved line going upwards on a graph?<br><br>science 8th grade :)
    10·1 answer
  • The diameter of a hydrogen atom is 0.000000000106 m. How can this
    15·1 answer
  • Explain in terms of the arrangement of particles the kinetic theory of matter​
    15·1 answer
  • The fictional rocket ship Adventure is measured to be 65 m long by the ship's captain inside the rocket.When the rocket moves pa
    13·1 answer
  • According to the Law of Conservation of Energy, why does the first hill on a roller coaster always have to be the tallest of all
    12·1 answer
  • Alistar places a 6.4 kg block on an incline plane that is 23 degrees above the horizontal. The block starts from rest, and in 2.
    11·1 answer
  • An electric hoist does 56,447 J of work in raising 115 kg load. How high (in meters) was the load lifted?
    13·1 answer
  • Sample Response: Yes, his graph is correct because it shows that as the average kinetic energy increases, so does the temperatur
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!