1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
belka [17]
3 years ago
10

If the jet is moving at a speed of 1140 km/h at the lowest point of the loop, determine the minimum radius of the circle so that

the centripetal acceleration at the lowest point does not exceed 7.0 g's?Calculate the 69-kg pilot's effective weight (the force with which the seat pushes up on him) at the bottom of the circle, and at the top of the circle (assume the same speed)?
Physics
1 answer:
AnnZ [28]3 years ago
4 0

To solve this problem we will apply the concepts related to the centripetal Force and the Force given by weight and formulated in Newton's second law. Through the two expressions we can find the radius of curve made in the hand. To calculate the normal force, we will include the concepts of sum of forces to obtain the net force on the body at the top and bottom of the maneuver. The expression for centripetal force acting on the jet is

F_c = \frac{mv^2}{r}

According to Newton's second law, the net force acting on the jet is

F = ma

Here,

m = mass

a = acceleration

v = Velocity

r = Radius

PART A ) Equating the above two expression the equation for radius is

\frac{mv^2}{r} = ma

r = \frac{v^2}{a}

Replacing with our values we have that

r = \frac{(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{7(9.8m/s^2)}

r = 1.462*10^3m

PART B )

<u>- The expression for effective weight of the pilot at the bottom of the circle is</u>

N = mg +\frac{mv^2}{r}

N = (69kg)(9.8m/s^2)+\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}

N = 5408.87N

<em>Note that the normal reaction N is directed upwards and gravitational force mg is directed downwards. At the bottom of the circle, the centripetal force is directed upwards. So the centripetal force is obtained from the gravitational force and the normal reaction. </em>

<u>- The expression for effective weight of the pilot at the top of the circle is</u>

N = mg -\frac{mv^2}{r}

N = (69kg)(9.8m/s^2)-\frac{(69)(1140km/hr[\frac{1000m}{1km}\frac{1hour}{3600s}])^2}{1.462*10^3m}

N = 4056.47N

<em>Note that at the top of the circle the centripetal force is directed downwards. So the centripetal force is obtained from normal reaction and the gravitational force. </em>

You might be interested in
Describe an experiment to show that air support burning​
noname [10]
Take a small burning candle. ... After few minutes the candle is extinguished. As the supply of air is stopped due to glass jar the burning of candle is also stopped. This experiment proves that air supports burning.
3 0
3 years ago
N
PtichkaEL [24]
Hi I need help with some questions I have on a quiz / test
4 0
3 years ago
Please answer any of these thanks !
KIM [24]
1).  The equation is: (speed) = (frequency) x (wavelength)

Speed = (256 Hz) x (1.3 m) = 332.8 meters per second

 2).  If the instrument is played louder, the amplitude of the waves increases.
On the oscilloscope, they would appear larger from top to bottom, but the
horizontal size of each wave doesn't change.

If the instrument is played at a higher pitch, then the waves become shorter,
because 'pitch' is directly related to the frequency of the waves, and higher
pitch means higher frequency and more waves in any period of time.

If the instrument plays louder and at higher pitch, the waves on the scope
become taller and there are more of them across the screen.

3).  The equation is:  Frequency = (speed) / (wavelength)
(Notice that this is exactly the same as the equation up above in question #1,
only with each side of that one divided by 'wavelength'.)

Frequency = 300,000,000 meters per second / 1,500 meters = 200,000 per second.

That's ' 200 k Hz ' .

Note:
I didn't think anybody broadcasts at 200 kHz, so I looked up BBC Radio 4
on-line, and I was surprised.  They broadcast on several different frequencies,
and one of them is 198 kHz !
7 0
3 years ago
Where will the spacecraft be when the gravitational forces acting on it are equal?
klio [65]
It would be not be able to move yet it would be in the air

6 0
3 years ago
8. A crate of bananas weighing 3000 N is shipped from South America to New York, where it
LiRa [457]

Answer:

Mechanical advantage = 15

Explanation:

Given the following data;

Output force = 3000N

Input force = 200N

To find the mechanical advantage;

Mechanical advantage = output force/input force

Substituting into the equation, we have

Mechanical advantage = 3000/200

Mechanical advantage = 15

3 0
3 years ago
Other questions:
  • If iron were to bound with oxygen, predict the formula for each oxidation number of iron.
    13·1 answer
  • Help pls i give brainielest
    14·1 answer
  • What is the rotational kinetic energy of the Earth about the Sun? Assume the earth is a uniform sphere, mass of the Earth is 5.9
    7·1 answer
  • which object has the most gravitational potential energy? A. an 8 kg book at a height of 3m B. an 5 kg book at a height of 3 m C
    7·2 answers
  • An underwater air bubble has an excess inside pressure of 13 pa. what is the excess pressure inside an air bubble with twice the
    11·1 answer
  • A skateboarder with mass ms = 54 kg is standing at the top of a ramp which is hy = 3.3 m above the ground. The skateboarder then
    14·1 answer
  • The period of a pendulum may be decreased by
    14·2 answers
  • A student was heard saying "the mass of a ball on the moon is one sixth it's mass on earth"Give a reason why this statement is w
    14·2 answers
  • The forces of gravity between the earth and the moon causes
    10·1 answer
  • Darcy suffers from farsightedness equally severely in both eyes. The focal length of either of Darcy's eyes is 19.8 mm in its mo
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!