You may look at what group they are in
Group
1A=Group 1
2A = Group 2
3A = Group 13
4A= Group 14
5A=Group 15
6A=Group 16
7A=Group 17
The #A tells you how many valence electrons there are by the # before A. Such as Chlorine, which is in 7A, so therefore has 7 valence electrons.
Explanation:
Mass of the ball, m = 0.058 kg
Initial speed of the ball, u = 11 m/s
Final speed of the ball, v = -11 m/s (negative as it rebounds)
Time, t = 2.1 s
(a) Let F is the average force exerted on the wall. It is given by :


F = 0.607 N
(b) Area of wall, 
Let P is the average pressure on that area. It is given by :


P = 0.202 Pa
Hence, this is the required solution.
Answer:
The y-component of the car's position vector is 670m/s.
The x-component of the acceleration vector is -3, and the y-component is 40.
Explanation:
The displacement vector of the car with velocity

is the integral of the velocity.
Integrating
we get the displacement vector
:

Now if the initial position if the car is

then the displacement of the car at time
is


Now at
, we have

The y-component of the car's position vector is 670m/s.
The acceleration vector is the derivative of the velocity vector:

and at
it is

The x-component of the acceleration vector is -3, and the y-component is 40.
Power=work/time
So,
Power =450/50=9watts
Explanation:
It's pressure become three times larger because according to Boyles Law the pressure of fixed mass of gas is inversely proportional to it's volume provided that temp remains constant. That means a reduction in volume, will result in an increase in pressure and vice versa.