Temperature is how hot or cold something is,barometric is air pressure(when the pressures high,the weather is dry)humidity is how moist the air is and how many water particles are there, wind speed and direction is how the hot and cold air is moving and how fast,which makes wind (high to low, hot to cold) precipitation is how much it is raining at that point.
Answer: 117.6N
Explanation:
By the second Newton's law, we know that:
F = m*a
F = force
m = mass
a = acceleration
We know that in the surface of the Earth, the gravitational acceleration is g = 9.8m/s^2.
Then we just can input that acceleration in the above equation, and also replace m by 12kg, and find that the force due the gravity is:
F = 12kg*9.8m/s^2 = 117.6N
Answer: The pressure that one experiences on the Mount Everest will be different from the one, in a classroom. It is because pressure and height are inversely proportional to each other. This means that as we move up, the height keeps on increasing but the pressure will keep on decreasing. This is the case that will be observed when one stands on the Mount Everest as the pressure is comparatively much lower there.
It is because as we move up, the amount of air molecules keeps on decreasing but all of the air molecules are concentrated on the lower part of the atmosphere or on the earth's surface.
Thus a person in a low altitude inside a classroom will experience high pressure and a person standing on the Mount Everest will experience low pressure.
I think the correct answer is the second option. A circuit describes a closed conducting loop through which an electrical current can flow. It is a path that an electrical current could flow. A circuit could be a closed one or an open circuit. A closed circuit would be a circuit where the current could flow continuously. An open circuit would be a type of circuit where the flow current would only go once and stopped at a particular point since the current has nowhere to go. For a circuit to work, an electric supply should be available to supply the electric current.