Answer:
Option (D) On average, the molecules of gas 1 lose some of their kinetic energy to the molecules of gas 2 through collisions, resulting in the two gases eventually having the same temperature.
Explanation:
From the question given, Gas 1 was initially at a higher temperature than Gas 2.
As the two gas mixes together, there will be a transfer of heat from Gas 1 molecules to Gas 2 molecules. Now, as this continues over a period of time, the two gas will eventually have the same temperature.
| Impedance | = √ [R² +(ωL)²]
R² = 6800² = 4.624 x 10⁷
(ωL)² = (2 · π · f · 2.3 · 10⁻³)²
= 2.0884 x 10⁻⁴ f²
| Z | = √[ (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²) ] = 1.6 x 10⁵
(1.6 x 10⁵)² = (4.624 x 10⁷) + (2.0884 x 10⁻⁴ f²)
(2.56 x 10¹⁰) - (4.624 x 10⁷) = 2.0884 x 10⁻⁴ f²
Frequency² = (2.56 x 10¹⁰ - 4.624 x 10⁷) / 2.0884 x 10⁻⁴
= 2.555 x 10¹⁰ / 2.0884 x 10⁻⁴
= 1.224 x 10¹⁴
= 122,400 GHz <== my calculation
11.1 MHz <== online impedance calculator
Obviously, I must have picked up some rounding errors
in the course of my calculation.
Answer:
32cm³
Explanation:
Given parameters:
Density of substance = 2.7g/cm³
Mass of substance = 86.4g
Unknown:
Volume of substance = ?
Solution:
Density is the mass per unit volume of a substance.
Density = 
Since the unknown is volume we solve for it;
mass = density x volume
86.4 = 2.7 x volume
volume =
= 32cm³
Answer:
Momentum is given by
p
=
m
v
. Impulse is the change of momentum,
I
=
Δ
p
and is also equal to force times time:
I
=
F
t
. Rearranging,
F
=
I
t
=
Δ
p
t
=
0
−
20
,
000
5
=
−
4000
N
.
Explanation:
Momentum before the collision is
p
=
m
v
=
2000
⋅
10
=
20
,
000
k
g
m
s
−
1
.
Assuming the truck comes to a complete halt, the momentum after the collision is
0
k
g
m
s
−
1
.
The change in momentum,
Δ
p
, is initial minus final
→
0
−
20
,
000
=
−
20
,
000
This is called the impulse:
I
=
Δ
p
. Impulse is also equal (check the units) to force times time:
I
=
F
t
.
We can rearrange this expression to make
F
the subject:
F
=
I
t
=
Δ
p
t
=
−
20
,
000
5
=
−
4000
N
The negative sign just means the force acting is in the opposite direction to the initial momentum.
(This will be the average force acting during the collision: collisions are chaotic so the force is unlikely to be constant.)