-- Electric field lines DO never cross. <em>(A)
</em>
-- Electric field lines that are close together DO indicate a stronger electric field. <em>(B)
</em>
-- Electric field lines DO not affect the charge that created them. <em>(C)</em>
-- Electric field lines DON'T begin on north poles and end on south poles. North and South "poles" are the way we talk about magnets, not electric charges.
There is an indirect relationship between length and frequency. The longer the length the pipe has, the higher frequency it is. The shorter the length the pipe has, the lower frequency it is.
<u>Explanation:</u>
The four properties of the string that affect its frequency are length, diameter, tension, and density. These properties are described below: When the length of a string is changed, it will vibrate with a different frequency. Shorter strings have higher frequency and therefore higher pitch.
The longer the tube is the lower the pitch of the note that it can emit. When a tube is heated it expands and so is longer! As the gas in the tube gets warmer the molecules move faster, that means they can carry the vibrations of the sound wave more rapidly and so the pitch goes up.
Answer:
The average atomic mass is 79.91 amu.
Explanation:
Since
Atomic mass can be find by Multiplying the relative abundance of each isotope by its atomic mass, then add them together to get the atomic mass of the element.
so
Atomic mass = (0.5069)(78.92 amu) + (0.4931)(80.92 amu)
=79.91 amu
So the Atomic mass of the bromine is 79.91amu.
a. The restoring force in the spring has magnitude
F[spring] = k (0.79 m)
which counters the weight of the mass,
F[weight] = (0.46 kg) g = 4.508 N
so that by Newton's second law,
F[spring] - F[weight] = 0 ⇒ k = (4.508 N) / (0.79 m) ≈ 5.7 N/m
b. Using the same equation as before, we now have
F[weight] = (0.75 kg) g = 7.35 N
so that
(5.7 N/m) x - 7.35 N = 0 ⇒ x = (7.35 N) / (5.7 N/m) ≈ 1.3 m