The buoyant force must be greater than water.
Answer:
Total displacement will be 47 meter
Total distance will be 83 meters
Explanation:
We have given that first the student go eastward towards bus stop 20 meters
But he realizes that she dropped his physics notebook and so h=she turns back along the same way up to 18 meters
So displacement = 20-18 = 2 meters
And he travel 45 meters in east along the bus stop so total displacement = 45+2 = 47 meters
Total distance traveled by the student = 20+18+45 = 83 meters
Answer:
In the clarification portion elsewhere here, the definition of the concern is mentioned.
Explanation:
So like optical telescopes capture light waves, introduce it to concentrate, enhance it, as well as make it usable through different instruments via study, so radio telescopes accumulate weak signal light waves, introduce that one to focus, enhance it, as well as make this information available during research. To research naturally produced radio illumination from stars, galaxies, dark matter, as well as other natural phenomena, we utilize telescopes.
Optical telescopes detect space-borne visible light. There are some drawbacks of optical telescopes mostly on the surface:
- Mostly at night would they have been seen.
- Unless the weather gets cloudy, bad, or gloomy, they shouldn't be seen.
Although radio telescopes monitor space-coming radio waves. Those other telescopes, when they are already typically very massive as well as costly, have such an improvement surrounded by optical telescopes. They should be included in poor weather and, when they travel through the surrounding air, the radio waves aren't obscured by clouds. Throughout the afternoon and also some at night, radio telescopes are sometimes used.
Answer:
9m^3
Explanation:
Given data
volume v1= 3m^3
volume v2= ???
Temperature T1= 20.0°C.
Temperature T2= 60.0°C.
Applying the relation for temperature and volume
V1/T1= V2/T2
substitute
3/20= V2/60
3*60= V2*20
180= 20*V2
180/20= V2
V2= 9m^3
Hence the final volume is 9m^3