Hello
This is a problem of accelerated motion, where the acceleration involved is the gravitational acceleration:

, and where the negative sign means it points downwards, against the direction of the motion.
Therefore, we can use the following formula to solve the problem:

where

is the initial vertical velocity of the athlete,

is the vertical velocity of the athlete at the maximum height (and

at maximum height of an accelerated motion) and S is the distance covered between the initial and final moment (i.e., it is the maximum height). Re-arranging the equation, we get
Bcoz when you place a magnet close enough the magnet attracts or repals without any other fore we dont touch the magnet so it is non contact
Answer:
(D) It is equal to the original velocity of the skater.
Explanation:
The velocity of the center of mass of a system is

The velocity of the center of mass is constant if there is no external force, because the total momentum of the whole system is conserved.
So, before the snowball is thrown, the velocity of the center of mass is equal to that of the skater. This velocity will always be equal to the velocity of the center of mass of the system.
Answer:
d. The hammer falls with a constant acceleration
Explanation:
Since gravity is the only thing that is acting on the hammer as it falls and gravity is a form of acceleration then acceleration of 9.81m/s² which is gravity is the correct answer.