Answer:
Length, l = 33.4 m
Explanation:
Given that,
Electrical field, 
Let the electrical potential is, 
We need to find the length of a thundercloud lightning bolt. The relation between electric field and the electric potential is given by :

So, the length of a thundercloud lightning bolt is 33.4 meters. Hence, this is the required solution.
Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
Answer:
The x-coordinate of the particle is 24 m.
Explanation:
In order to obtain the x-coordinate of the particle, you have to apply the equations for Two Dimension Motion
Xf=Xo+Voxt+0.5axt²(I)
Yf=Yo+Voyt+0.5ayt² (II)
Where Xo, Yo are the initial positions, Xf and Yf are the final positions, Vox and Voy are the initial velocities, ax and ay are the accerelations in x and y directions, t is the time.
The particle starts from rest from the origin, therefore:
Vox=Voy=0
Xo=Yo=0
Replacing Yf=12, Yo=0 and Voy=0 in (I) and solving for t:
12=0+(0)t+ 0.5(1.0)t²
12=0.5t²
Dividing by 0.5 and extracting thr squareroot both sides:
t=√12/0.5
t=√24 = 2√6
Replacing t=2√6, ax=2.0,Xo=0 and Vox=0 in (I) to obain the x-coordinate:
Xf=0+0t+0.5(2.0)(2√6)²
Xf= 24 m
Object weight varues on cellestial bodies due to the acceleration due to gravity acting on the body. the acc due to gravuty depend on the mass and radius of the cellestial body. Thus the weight varies on cellestian bodies