1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
3 years ago
15

A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The

projectile moves in the gravitational field of the Earth. Find the angular momentum of the projectile about the origin when the particle is at the following locations. (Use the following as necessary: vi, θ, m, and g for the acceleration due to gravity.)
(a) at the origin
L with arrow =
rmvcos(θ)
Incorrect: Your answer is incorrect.


(b) at the highest point of its trajectory
L with arrow =


(c) just before it hits the ground
L with arrow =

Physics
2 answers:
FrozenT [24]3 years ago
4 0

The angular momentum of the projectile about the origin when the particle is at the following locations is zero

<h3>Explanation: </h3>

A projectile of mass m is launched with an initial velocity making an angle θ with the horizontal as shown below (attached). The projectile moves in the gravitational field of the Earth. The angular momentum of the projectile about the origin when the particle is at the following locations. (Use the following as necessary: vi, θ, m, and g for the acceleration due to gravity.)

L=r x p

Angular momentum is zero because there is no r.  Since the angular momentum depends on then cross product of the position vector and momentum vector which is in the same direction as velocity, therefore the formula for the angular momentum can be written as mvr_{perpendicular}, where the cross product component of r vector along/parallel to velocity/momentum is 0.

Learn more about the angular momentum brainly.com/question/13890070

#LearnWithBrainly

sergeinik [125]3 years ago
3 0
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
You might be interested in
Which chart correctly identifies the properties of electric and magnetic fields?
bazaltina [42]
The correct answer for the question that is being presented above is this one: "D.
Property Electric Field Magnetic Field
<span>Can be produced by moving electric charge X </span>
Have two sides with opposite characteristics X X
Can make metals, such as nickel, iron, and cobalt, into magnets X X
<span>Can be turned on or off with a switch X"</span>
6 0
3 years ago
If you break quartz to learn if it splits smoothly in a certain direction, what physical property are you testing?
IrinaVladis [17]
Hope this helps!!!!!!!!!!

4 0
3 years ago
Read 2 more answers
What is the kinetic energy of a 0.5 kg puppy that is running 1.5m/s
bija089 [108]

Answer: Well the answer is KE = 5.625E-7 i just don't know the units for it...

Hope this helps....... Stay safe and have a Merry Christmas!!!!!!!!!! :D

3 0
3 years ago
What is the distance an object would be from Earth if its parallax were one arcsecond?
ZanzabumX [31]
The correct answer is (a.) a parsec. A parsec is a distance an object would be from Earth if its parallax were one arcsecond. This unit of measurement is usually used in astronomy which makes it easier for astronomers to calculate or measure in space accurately. 
8 0
3 years ago
What is runoff water?
vitfil [10]

<u>Answer:</u> runoff water is water from rain, snow, or other sources, that flows through the land, and is a major component of the water cycle.

6 0
3 years ago
Read 2 more answers
Other questions:
  • An area where the particles in a medium are spaced close together is called a _____.
    9·2 answers
  • If a substance or object has the ability to do work, then it has
    7·1 answer
  • (a) How much gravitational potential energy (relative to the ground on which it is built) is stored in an Egyptian pyramid, give
    8·1 answer
  • Which is a unit of density? <br> a. cm3/g <br> b. g/cm <br> c. g/cm3 <br> d. ml/g
    7·1 answer
  • A baseball is hit high and far. Which of the following statements is true? At the highest point,
    6·1 answer
  • How are cheek and skin cells different?
    7·1 answer
  • Look of the picture below. Do the red dots have a positive charge, negative charge, or no charge?
    7·1 answer
  • QUICK: A circular loop of radius r is rotated through a magnetic field B, which of the following would increase the magnetic flu
    9·2 answers
  • 1. Through the law of gravity, Newton showed that two objects attracted by gravity actually orbit
    9·1 answer
  • Match the type of boundary with its characteristic.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!