1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
2 years ago
15

A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The

projectile moves in the gravitational field of the Earth. Find the angular momentum of the projectile about the origin when the particle is at the following locations. (Use the following as necessary: vi, θ, m, and g for the acceleration due to gravity.)
(a) at the origin
L with arrow =
rmvcos(θ)
Incorrect: Your answer is incorrect.


(b) at the highest point of its trajectory
L with arrow =


(c) just before it hits the ground
L with arrow =

Physics
2 answers:
FrozenT [24]2 years ago
4 0

The angular momentum of the projectile about the origin when the particle is at the following locations is zero

<h3>Explanation: </h3>

A projectile of mass m is launched with an initial velocity making an angle θ with the horizontal as shown below (attached). The projectile moves in the gravitational field of the Earth. The angular momentum of the projectile about the origin when the particle is at the following locations. (Use the following as necessary: vi, θ, m, and g for the acceleration due to gravity.)

L=r x p

Angular momentum is zero because there is no r.  Since the angular momentum depends on then cross product of the position vector and momentum vector which is in the same direction as velocity, therefore the formula for the angular momentum can be written as mvr_{perpendicular}, where the cross product component of r vector along/parallel to velocity/momentum is 0.

Learn more about the angular momentum brainly.com/question/13890070

#LearnWithBrainly

sergeinik [125]2 years ago
3 0
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
You might be interested in
3. the definition of the FREQUENCY of a sound is​
sergiy2304 [10]
Definition: Frequency is the measurement of the number of times that a repeated event occurs per unit of time. Sound moves through a medium such as air or water as waves. It is measured in terms of frequency and amplitude. Frequency, sometimes referred to as pitch, is the number of times per second that a sound pressure wave repeats itself.
8 0
3 years ago
Describe two methods that can be used to cook eggs.​
weeeeeb [17]
You can poach an egg which enfolded boiling water and stirring it and dropping a cracked egg in the water until it is fully cooked or you could hard boil and egg by boiling water and letting it cook 5,6 minutes tell you have a soft yellow center or which ever way you prefer
4 0
2 years ago
If a baseball's velocity is increased to four times its original velocity, by what factor does its kinetic energy increase
jeyben [28]

Answer:

16 times

Explanation:

Original

KE(i)  = 1/2mv²

After increasing

KE(f) = 1/2m(4v)²

KE(f) = 8mv²

KE(f)/KE(i) = 8 x 2 = 16

8 0
2 years ago
The five general principles from the APA are meant to __________. A. be enforceable rules B. be posted in every office C. guide
Paha777 [63]
The answer is C guide and inspire good conduct
7 0
2 years ago
What is the momentum of a 73 person running with a speed of 2 m/s
NemiM [27]

Answer:

Explanation:

Idk

6 0
3 years ago
Other questions:
  • A dolphin's tops speed is 17 m/s. If a dolphin swam at this constant velocity for one hour
    7·1 answer
  • A cylinder of mass mm is free to slide in a vertical tube. The kinetic friction force between the cylinder and the walls of the
    7·1 answer
  • The internal energy of a material is determined by
    14·2 answers
  • A 65 kg student climbs 7 m up a rope at a constant speed. If the students power to output is 300 w, how long does it take the st
    5·1 answer
  • a scientist is creating a new synthetic material. the material’s density is 6.1 g/cm3. which sentences describe how the scientis
    14·2 answers
  • A student measures the time it takes for two reactions to be completed reaction eight is completed and 57 seconds and reaction b
    10·1 answer
  • Answer asap! No links or weird answers pls. Thank you
    12·1 answer
  • Please answer all three answers
    11·1 answer
  • The acceleration of positive performing SHM is 12cm/sec at distance of 3cm from the mean position its time period is?​
    7·1 answer
  • HELP ASAAPP!!!! if A MAN JAY WALKED ACROSS THE STREET IS THAT BAD
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!