Answer:
c. vf is greator than v2, but less than v1
Explanation:
The principle of conservation of linear momentum states that when two or more bodies act upon one another, their total momentum remains constant.
In a system of colliding bodies the total momentum of the system just before the collision is the same as the total momentum just after the collision.
Collisions in which the kinetic energy is conserved are called elastic collision.
Collisions in which the kinetic energy is not conserved are called inelastic collisions. If the two objects stick together after the collision and move with a common velocity, the collision is said to be perfectly inelastic.
<em>The above scenario is a perfectly inelastic collision. The initial velocity of particle 1 was greater than particle 2 before collision. After collision, its velocity will reduce to a final velocity vf as it transfers some of its kinetic energy to particle 2; whereas, the velocity of particle 2 will increase to a final velocity vf as it absorbs some of the kinetic energy of particle 1.</em>
Therefore,
a. vf = v2 is wrong because vf is greater than v2
b. vf is less than v2 is wrong because vf is greater than v2
c. vf is greater than v2, but less than v1 is correct.
d. vf = v1 is wrong because vf is less than v1
Guess I recommend doing that
Answer: B
Explanation:
Biosphere breaks down rock of the geosphere (plant roots), but when it comes to soil, minerals of the geosphere feed the plants. Biosphere and atmosphere interact through animal and plant respiration of oxygen and carbon dioxide. Geosphere creates, destroys and keeps various biosphere places safe.
Current can vary in different branches of a circuit
Answer:
Radius of cross section, r = 0.24 m
Explanation:
It is given that,
Number of turns, N = 180
Change in magnetic field, 
Current, I = 6 A
Resistance of the solenoid, R = 17 ohms
We need to find the radius of the solenoid (r). We know that emf is given by :


Since, E = IR




or

Area of circular cross section is, 


r = 0.24 m
So, the radius of a tightly wound solenoid of circular cross-section is 0.24 meters. Hence, this is the required solution.