The question is incomplete, the complete question is;
A student is measuring the volumes of nectar produced by a flowering plant for an experiment. He measures nectar from 50 flowers using a graduated cylinder that measures to the nearest millilitre (mL). Which statement describes a change that can help improve the results of his experiment?
A.) His measurements will be more precise if he takes measurements from an additional 100 flowers. B.) His measurements will be more accurate if he uses a graduated cylinder that measures to the nearest tenth of a mL. C.) His measurements will be more precise if he uses a graduated cylinder that measures to the nearest tenth of a mL. D.) His measurements will be more accurate if he takes measurements from an additional 100 flowers.
Answer:
His measurements will be more accurate if he uses a graduated cylinder that measures to the nearest tenth of a mL.
Explanation:
In the measurements of volume using most graduated cylinders, the cylinders are calibrated to the nearest tenth owing to the uncertainty in the measurement of volume.
Hence if a cylinder has measures to the nearest milliliter(mL), then he can improve his experiment by using a graduated cylinder that measures to the nearest tenth of a mL
Answer:
139.6m/s
Explanation:
Calculate the tension first, T=m*g
mass(m): 1750kg, gravity(g): 9.8m/s^2
T= 1750*9.8
=17150N
Then calculate the wave speed using the equation v = √ (T/μ)
v= √(17150N)/(0.88kg/m)
=139.6m/s
Answer:
343/1500
Explanation:
Power: This can be defined as the product force and velocity. The S.I unit of power is Watt (w).
From the question,
P' = mg×v................. Equation 1
Where P' = power used to gain an altitude, m = mass of the engine, g = acceleration due to gravity of the engine, v = velocity of the engine.
Given: m = 700 kg, v = 2.5 m/s, g = 9.8 m/s²
Substitute into equation 1
P' = 700(2.5)(9.8)
P' = 17150 W.
If the full power generated by the engine = 75000 W
The fraction of the engine power used to make the climb = 17150/75000
= 343/1500
"tides" these are water waves on the sea
Rather, an alteration in wavelength affects the frequency in an inverse manner. A doubling of the wavelength results in a halving of the frequency; yet the wave speed is not changed.