Answer:
7
Step-by-step explanation:
280=40t/40
t=7
3x +7x+x+x should be your answer
Length = x
width = y
y = 16
x = 2y
x = 2(16)
x = 32
perimeter = 2x + 2y
= 2(32) + 2(16)
= 64 + 32
= 96
Answer:
360 hours
Step-by-step explanation:
When trying to find the number of hours out of the number of days someone has been doing something, assuming that she spent all 15 days traveling with no rest, you just multiply however many days (In this case, 15 days) by 24 hours.
This gives us the equation 15 times 24, which then equals 360.
A way I check these is that I divide however many hours I got by 24 and make sure it equals our first number.
We get the equation 360 divided by 24, which does, in fact, equal 15.
Answer:
\\x= P/(c -d)[/tex],
Assume that the price of each minute in the first plan is $c and that the second plan charges a flat rate of $P and a charge of additional $d for every minute.
Step-by-step explanation
Assume that the price of each minute in the first plan is $c and that the second plan charges a flat rate of $P and a charge of additional $d for every minute.
Thus, the monthly cost of a customer who consumes x minutes in each plan is:
For the first plan: 
and for the second plan: 
Considering that the monthly costs must be the same in each plan, you have to:
![cx = P + dx\\ transposing terms\\cx - dx = P\\ applying common factor\\(c -d)x = P\\ dividing by [tex]c - d](https://tex.z-dn.net/?f=cx%20%3D%20P%20%2B%20dx%5C%5C%20transposing%20terms%3C%2Fp%3E%3Cp%3E%5C%5Ccx%20-%20dx%20%3D%20P%5C%5C%20%20%20applying%20common%20factor%3C%2Fp%3E%3Cp%3E%5C%5C%28c%20-d%29x%20%3D%20P%5C%5C%20dividing%20by%20%5Btex%5Dc%20-%20d)
\\x= P/(c -d)[/tex].
For example if
, Then the number of minutes would be,
and the total cost for each plan would be 