1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
elixir [45]
3 years ago
10

( I NEED THIS FAST)A speedometer has a percent error of 10%. The actual speed of the car is 40 mph. Select from the drop-down me

nus to correctly complete the statement.
The speedometer is likely to show the speed is either (choose) mph or (choose) mph. 30.0 40.6
36.0 41.6
38.4 44.0
40.4 50.0
Mathematics
2 answers:
ikadub [295]3 years ago
6 0

Answer = 36.0 mph


As per the question,


Actual speed of the car = 40 mph.

Speedometer has a percent error of 10%.

The error can be negative as well as positive.

If the error is negative, it means speedometer is showing less speed than actual speed= - 10%

10  % of 40 = 4

speed shown by speedometer = 40 - (10% of 40) = 36 mph

If the error is positive, it means speedometer is showing more speed than actual speed = +10%

speed shown by speedometer = 40 + ( 10% of 40) = 44 mph

as per the given options, correct option is 36.0 mph

Jobisdone [24]3 years ago
6 0

Answer:

36.0 and 44.0

Step-by-step explanation:


You might be interested in
Please help thank you
Allushta [10]

The average rate of change of credit card is $ 401.79 /year.

<h3>What is Average Rate?</h3>
  • A single rate that is a weighted average of the different rates that are applicable to property in various locations.
  • An average is a single number calculated as the average of a set of numbers, typically calculated as the sum of the numbers divided by the total number of numbers in the set (the arithmetic mean).

<u>Solution</u>

The difference of credit card debt between the year 2006 and 1992 = 8900 - 3275 = $5625

The difference of years between the year 2006 and 1992 = 2006 - 1992 = 14

average rate of change of credit card debt with respect to time = \frac{difference of credit card debt}{difference of years}

average rate = \frac{5625}{14} = $ 401.79 / year

know more about average numerical brainly.com/question/18296887

#SPJ4

6 0
2 years ago
POSSIBLE POINTS: 10
Nadusha1986 [10]

Answer:

5 + 3t

Step-by-step explanation:

t = amount Tanya has

Lucy = $5 more than 3x of what Tanya has

5 0
3 years ago
The box plot on this page shows the total amount of time, in minutes, the students of a class surf the Internet every day:
maxonik [38]

Answer:

It would be Part B

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
2 years ago
What is the value of w if a=184 cm2 and l =23 cm?
notsponge [240]
The calculation of the value of w depends on what is the shape of the given dimension above. The given area of the shape is represented by a which is equal to 184 cm^2. From the formula of the area of the shape you can manipulate and obtain the value of w.
6 0
3 years ago
Other questions:
  • The lengths of the sides of a rectangle are 12.4 and 26. What are the measures of the angles between its diagonals? Round your a
    12·1 answer
  • Solve r = 1/2m^2p for p
    5·1 answer
  • If the perpendicular bisector of one side of a triangle goes through the opposite vertex, then is the triangle ( sometimes, alwa
    11·1 answer
  • Find the error &amp; find the correct answer 2In(x)=In(3x)-[In(9)-2In(3)] In(x^2)=In(3x)-[In(9)-In(9)] In(x^2)=In(3x)-0 In(x^2)=
    9·1 answer
  • 100 POINTS!!!! PLEASE ANSWER WITH WORK!! A and/or C please.
    15·2 answers
  • Find two equivalent fractions for 2/12
    10·2 answers
  • Please help!!!!!!!!!!
    9·1 answer
  • The slope of the tangent line to the curve x^3y+y^2-x^2=5 at the point (2,1) is
    13·1 answer
  • Graph the inequality. 3x+4y&gt;20
    6·1 answer
  • Find the range of the data.<br><br> 41, 64, 97, 12, 8, 8
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!